

Allied Vision Technologies Canada Inc.
101-3750 North Fraser Way
Burnaby, BC
V5J 5E9 / Canada

AVT PvAPI
Programmers’ Reference Manual

Version 1.24
May 28, 2010

AVT/Prosilica PvAPI Manual Page ii

Table of Contents

Table of Contents ... ii

Overview...1

Using the Driver ...2

Platform ..2

Programming Languages (on Windows) ..2

Threading ...2

Distribution ...2

Driver Installation ..3

Using the API ...4

Module Version ...4

Module Initialization..4

List available cameras ...4

Opening a camera ..5

Setting up the camera & driver ...5

Image Acquisition and Capture ..7

Error Codes ...8

Function Reference ..10

PvAttrBooleanGet ...11

PvAttrBooleanSet..12

PvAttrEnumGet ...13

PvAttrEnumSet..14

PvAttrExists...15

PvAttrFloat32Get ..16

PvAttrFloat32Set ...17

PvAttrInfo..18

PvAttrInt64Get ..19

PvAttrInt64Set...20

PvAttrIsAvailable..21

PvAttrIsValid...22

PvAttrList ..23

PvAttrRangeEnum...24

PvAttrRangeFloat32..26

PvAttrRangeInt64..27

AVT/Prosilica PvAPI Manual Page iii

PvAttrRangeUint32 ...28

PvAttrStringGet...29

PvAttrStringSet ...30

PvAttrUint32Get ...31

PvAttrUint32Set ..32

PvCameraClose ...33

PvCameraCount...34

PvCameraEventCallbackRegister ...35

PvCameraEventCallbackUnregister..36

PvCameraInfoEx ...37

PvCameraInfoByAddrEx ..38

PvCameraIpSettingsChange..39

PvCameraIpSettingsGet ..40

PvCameraListEx..41

PvCameraListUnreachableEx ...42

PvCameraOpen..43

PvCameraOpenByAddr...45

PvCaptureAdjustPacketSize..46

PvCaptureEnd..47

PvCaptureQuery ..48

PvCaptureQueueClear ...49

PvCaptureQueueFrame ...50

PvCaptureStart...52

PvCaptureWaitForFrameDone..53

PvCommandRun ...54

PvInitialize...55

PvInitializeNoDiscovery ...56

PvLinkCallbackRegister..57

PvLinkCallbackUnRegister...58

PvUnInitialize..59

PvUtilityColorInterpolate..60

PvVersion ..62

AVT/Prosilica PvAPI Manual Page 1

Overview
This document is the programmer’s reference for Allied Vision Technologies’s GigE
Vision driver and its Application Programming Interface.

The Allied Vision Technologies PvAPI interface supports all GigE Vision cameras from
Allied Vision Technologies.

The PvAPI driver interface is a user DLL which communicates with NDIS (Network
Driver Interface Specification) and kernel drivers. (see Figure 1).

Figure 1. Allied Vision Technologies driver stack.

Your Application

PvAPI DLL
(pvapi.dll)

NDIS Filter

Driver

Windows TCP/IP
Stack

API (pvapi.h)

SW-HW Interface

AVT/Prosilica PvAPI Manual Page 2

Using the Driver

Platform

The Allied Vision Technologies driver is supported on the following Microsoft platforms:

• Windows 2000

• Windows XP Professional or Home (32bit or 64bit)

• Windows Vista and Windows 7 (32bit or 64bit)

The following alternative platforms are also supported:

• Linux (x86, PPC, x64, arm)

• QNX 6.3 (x86), 6.3 + Core Networking 6.4, 6.4 Beta

• Mac OS X (x86, PPC 32bit, x64)

The GigE Vision driver works with any Ethernet interface. If the optional GigE Filter
driver is installed, the CPU load on the host will significantly be reduced (this is only
available on Windows platforms). The Filter driver can be disabled from any adapter
that is not used to stream from a camera.

Programming Languages (on Windows)

The user DLL (“pvapi.dll”) is a standard-call DLL, which is accessible by most
programming languages.

Required C header files (“PvAPI.h” and “PvRegIO.h”) are included in the SDK.

Most compiled languages need an import library to call a DLL. An import library
(“PvAPI.lib”) for Microsoft Visual Studio 6.0 (and later) is included in the SDK. Most
compilers come with a tool to generate an import library from a DLL; see your
compiler’s manual for more information.

Threading

The driver is thread-safe, with a few exceptions as noted in this document.

Distribution

The following files may be redistributed for use with Prosilica/AVT cameras only:

On Windows:
 pvapi.dll
 psligvfilter.inf
 psligvfilter_m.inf
 psligvfilter.sys

Allied Vision Technologies GigE Filter Installer.exe
Allied Vision Technologies Viewer Installer.exe

AVT/Prosilica PvAPI Manual Page 3

On other platforms:

libPvAPI.so

libPvAPI.a

libImagelib.a

No other files from the SDK may be redistributed without written permission from Allied
Vision Technologies.

Driver Installation

The PvAPI DLL should be installed in your application’s directory. This ensures that the
correct version of PvAPI is available to your application.

Here are two mechanisms for installing the GigE Filter driver (Windows only):

1. Run “Allied Vision Technologies GigE Filter Installer.exe” . You can use the
command line option “ /S” to perform a silent installation.

2. Install the following files:
psligvfilter.sys - Copy to %system32%\drivers
psligvfilter.inf - Copy to %windir%\inf
psligvfilter_m.inf - Copy to %windir%\inf

Once installed, the GigE Filter driver will display as a service in Network adapter
properties, where you can enable/disable it.

AVT/Prosilica PvAPI Manual Page 4

Using the API

Module Version

As new features are introduced to PvAPI, your software may not support older versions
of PvAPI. In this case, use PvVersion to check the version number of PvAPI.

Module Initialization

Before calling any PvAPI functions (other than PvVersion), you must initialize the PvAPI
module by calling PvInitialize.

When you are finished with PvAPI, call PvUnInitialize to free resources. These two API
functions must always be paired. It is possible, although not recommended, to call the
pair several times within the same program.

List available cameras

Function PvCameraList will enumerate all Allied Vision Technologies cameras
connected to the system.

Example:
tPvCameraInfoEx list[10];
unsigned long numCameras;

numCameras = PvCameraListEx(list, 10, NULL,sizeof(t PvCameraInfoEx));

// Print a list of the connected cameras
for (unsigned long i = 0; i < numCameras; i++)
 printf("%s [ID %u]", list[i].SerialNumber, list[i] .UniqueId);

The tPvCameraInfoEx structure provides the following information about a camera:

UniqueId A value unique to each camera shipped
by Allied Vision Technologies.

CameraName People-friendly camera name (usually
part name)

ModelName Name of the camera part

PartNumber Manufacturer's part number

SerialNumber Camera's serial number

FirmwareVersion Camera's firmware version

PermittedAccess A combination of tPvAccessFlags

InterfaceId Unique value for each interface or bus

InterfaceType Interface type; see tPvInterface

AVT/Prosilica PvAPI Manual Page 5

To be notified when a camera is detected or disconnected, use PvLinkCallbackRegister.
Your callback function must be thread safe.

Opening a camera

A camera must be opened to control and capture images. Function PvCameraOpen is
used to open the camera.

Example:
tPvCameraInfoEx info;
unsigned long numCameras;
tPvHandle handle;

numCameras = PvCameraListEx(info, 1, NULL, sizeof(t PvCameraInfoEx));

// Open the first camera found, if it’s not already open. (See
// function reference for PvCameraOpen for a more complex example.)
if ((numCameras == 1) && (info.PermittedAccess & eP vAccessMaster))

PvCameraOpen(info.UniqueId, ePvAccessMaster, &handl e);

The camera must be closed when the application is finished.

Setting up the camera & driver

Attributes are used to control and monitor various aspects of the driver and camera(s).

For example, to start continuous acquisition, set attribute AcquisitionMode to
Continuous and run the command-attribute AcquisitionStart:

PvCaptureStart(Camera);
PvAttrEnumSet(Camera, "AcquisitionMode", "Continuou s");
PvCommandRun(Camera, "AcquisitionStart");

For example, to change the exposure time, set attribute ExposureValue:

PvAttrUint32Set(Camera, "ExposureValue", 10000); / / 10000 µs

For example, to read the image size in bytes:
// If you want to ensure portable code, you might c hoose to use
// tPvUint32 or your own typedef, in place of "unsi gned long".

unsigned long imageSize;

PvAttrUint32Get(Camera, "TotalBytesPerFrame", &imag eSize);

AVT/Prosilica PvAPI Manual Page 6

Table 1 introduces the basic attributes found on all cameras. For a complete list, see the
Camera Controls document. An attribute has a name, a type, and access flags such as
read-permitted and write-permitted.

Table 1. List of the basic attributes, found on all cameras.

Attribute Type AccessFla
gs

Description

AcquisitionMode Enumeratio
n

R/W The acquisition mode of the camera. Value set:
{Continuous,SingleFrame, MultiFrame, Recorder}.

AcquisitionStart Command Start acquiring images.

AcquisitionStop Command Stop acquiring images.

AcquisitionAbort Command Stop acquiring images (abort any on-going
exposure)

PixelFormat Enumeratio
n

R/W The image format. Value set: {Mono8, Mono16,
Bayer8, Bayer16, Rgb24, Rgb48, Yuv411, Yuv422,
Yuv444}.

Width Uint32 R/W Image width, in pixels.

Height Uint32 R/W Image height, in pixels.

TotalBytesPerFrame Uint32 R Number of bytes per image.

Function PvAttrList is used to list all attributes available for a camera. This list remains
static while the camera is opened.

To get information on an attribute, such as its type and access flags, call function
PvAttrInfo.

PvAPI currently defines the following attribute types (tPvDatatype):

Enumeration A set of values. Values are represented as strings.

Uint32 32-bit unsigned value.

Float32 32-bit IEEE floating point value.

Boolean A simple Boolean value (true,false)

Int64 64-bit signed value

String A string (null terminated, char[]).

Command Valueless; a function executes when the attribute is written.

PvAPI currently defines the following access flags (tPvAttributeFlags):

Read The attribute may be read.

Write The attribute may be written.

Volatile The camera may change the attribute value at any time. An
example of a volatile attribute is ExposureValue, because

AVT/Prosilica PvAPI Manual Page 7

the exposure is always changing if the camera is in auto-
expose mode.

Constant The attribute value will never change.

Table 2 lists the PvAPI functions used to access attributes.

Table 2. Functions for reading and writing attributes.

Attribute Type Set Get Range

Enumeration PvAttrEnumSet PvAttrEnumGet PvAttrRangeEnum

Uint32 PvAttrUint32Set PvAttrUint32Get PvAttrRangeUint32

Float32 PvAttrFloat32Set PvAttrFloat32Get PvAttrRangeFloat32

Int64 PvAttrInt64Set PvAttrInt64Get PvAttrRangeInt64

Boolean PvAttrBooleanSet PvAttrBooleanGet n/a

String PvAttrStringSet PvAttrStringGet n/a

Command PvCommand n/a n/a

Image Acquisition and Capture

To obtain an image from your camera, first setup PvAPI to capture images, then start
acquisition on the camera. These two concepts – capture and acquisition – while
related, are independent operations as it is shown below:

To capture images sent by the camera, follow these steps:

1. PvCaptureStart – initialize the image capture stream.

2. PvCaptureQueueFrame – queue frame buffer(s). As images arrive from the
camera, they are placed in the next frame buffer in the queue, and returned
to the user.

3. When done, PvCaptureEnd – close the image capture stream.

None of the steps above cause the camera to acquire an image. To effect image
acquisition on the camera, follow these steps:

1. Set attribute AcquisitionMode.

2. Run command attribute AcquisitionStart.

3. When done, depending on the application, run command attribute
AcquisitionStop.

Normally, image capture is initialized and frame buffers are queued before the
command AcquisitionStart is run, but the order can vary depending on the application.
To guarantee a particular image is captured, you must ensure that your frame buffer is
queued before the camera is instructed to start acquisition.

AVT/Prosilica PvAPI Manual Page 8

Image Capture

Images are captured using the asynchronous function PvCaptureQueueFrame.
Allocate an image buffer (use attribute TotalBytesPerFrame or calculate the size
yourself), fill out a tPvFrame structure, and place the frame structure on the queue with
PvCaptureQueueFrame.

Before a queued image buffer can be used or the frame structure modified, the
application needs to know when the image capture is complete. Two mechanisms are
available: either block your thread until capture is complete using
PvCaptureWaitForFrameDone, or specify a callback function when you run
PvCaptureQueueFrame. Your callback function is run by the driver when image
capture is complete.

NOTE: Always check that tPvFrame->Status equals ePvErrSuccess, when a frame
returned to you to ensure the data is valid. For example: lost data over the GigE
network (usually the result of an improperly configured camera or network card, e.g.
mismatch of packet size) will result in ePvErrDataMissing, meaning the complete frame
has not been received by the host.

Many frames can be placed on the frame queue, and their image buffers will be filled in
the same order they were queued. Up to 100 frames may be queued at one time. To
capture more images, keep submitting new frames as the old frames complete. Most
applications need not queue more than 2 or 3 frames at a time.

If you want to cancel all the frames on the queue, call PvCaptureQueueClear. The
status of the frame is set to ePvErrCancelled and, if applicable, the callbacks are run.

Image Acquisition

Image acquisition is setup via attributes AcquisitionMode, AcquisitionStart, and
AcquisitionStop. See the Camera Controls document for more information.

Error Codes

Most PvAPI functions return a tPvErr-type error code.

Typical errors are listed with each function in the reference section of this document.
However, any of the following error codes might be returned:

ePvErrSuccess Success – no error.

ePvErrCameraFault Unexpected camera fault.

ePvErrInternalFault Unexpected fault in PvAPI or driver.

ePvErrBadHandle Camera handle is bad.

ePvErrBadParameter Function parameter is bad.

ePvErrBadSequence Incorrect sequence of API calls. For example,

AVT/Prosilica PvAPI Manual Page 9

queuing a frame before starting image capture.

ePvErrNotFound Returned by PvCameraOpen when the requested
camera is not found.

ePvErrAccessDenied Returned by PvCameraOpen when the camera
cannot be opened in the requested mode, because
it is already in use by another application.

ePvErrUnplugged Returned when the camera has been unexpectedly
unplugged.

ePvErrInvalidSetup Returned when the user attempts to capture
images, but the camera setup is incorrect.

ePvErrResources Required system or network resources are
unavailable.

ePvErrQueueFull The frame queue is full.

ePvErrBufferTooSmall The frame buffer is too small to store the image.

ePvErrCancelled Frame is cancelled. This is returned when frames
are aborted using PvCaptureQueueClear.

ePvErrDataLost The data for this frame was lost. The contents of
the image buffer are invalid.

ePvErrDataMissing Some of the data in this frame was lost.

ePvErrTimeout Timeout expired. This is returned only by functions
with a specified timeout.

ePvErrOutOfRange The attribute value is out of range.

ePvErrWrongType This function cannot access the attribute, because
the attribute type is different.

ePvErrForbidden The attribute cannot be written at this time.

ePvErrUnavailable The attribute is not available at this time.

ePvErrFirewall Windows’ firewall is blocking the streaming port.

AVT/Prosilica PvAPI Manual Page 10

Function Reference

AVT/Prosilica PvAPI Manual Page 11

PvAttrBooleanGet

Get the value of a Boolean attribute.

Prototype
tPvErr PvAttrBooleanGet
(
 tPvHandle Camera,
 const char* Name,
 tPvBoolean* pValue
);

Parameters

Camera Handle to open camera.

Name Attribute name.

pValue Value is returned here.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not a Boolean type.

AVT/Prosilica PvAPI Manual Page 12

PvAttrBooleanSet

Set the value of a Boolean attribute.

Prototype
tPvErr PvAttrBooleanSet
(
 tPvHandle Camera,
 const char* Name,
 tPvBoolean Value
);

Parameters

Camera Handle to open camera.

Name Attribute name.

Value Value to set.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrOutOfRange The value is out of range at this time.

ePvErrForbidden The attribute cannot be set at this time.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not a Boolean type.

AVT/Prosilica PvAPI Manual Page 13

PvAttrEnumGet

Get the value of an enumeration attribute.

Prototype
tPvErr PvAttrEnumGet
(
 tPvHandle Camera,
 const char* Name,
 char* pBuffer,
 unsigned long BufferSize,
 unsigned long* pSize
);

Parameters

Camera Handle to open camera.

Name Attribute name.

pBuffer The value string (always null terminated) is copied here. This
buffer is allocated by the caller.

BufferSize The size of the allocated buffer.

pSize The size of the value string is returned here. This may be bigger
than BufferSize! Null pointer is allowed.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not an enumeration type.

AVT/Prosilica PvAPI Manual Page 14

PvAttrEnumSet

Set the value of an enumeration attribute.

Prototype
tPvErr PvAttrEnumSet
(
 tPvHandle Camera,
 const char* Name,
 const char* Value
);

Parameters

Camera Handle to open camera.

Name Attribute name.

Value The enumeration value (a null terminated string).

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrOutOfRange The value is not a member of the current enumeration set.

ePvErrForbidden The attribute cannot be set at this time.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not an enumeration type.

AVT/Prosilica PvAPI Manual Page 15

PvAttrExists

Query: does an attribute exist?

Prototype
tPvErr PvAttrExists
(
 tPvHandle Camera,
 const char* Name
);

Parameters

Camera Handle to open camera.

Name Attribute name.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess The attribute exists.

ePvErrNotFound The attribute does not exist.

Notes

The result of this query is static for this camera; it won’ t change while the camera is
open.

AVT/Prosilica PvAPI Manual Page 16

PvAttrFloat32Get

Get the value of a Float32 attribute.

Prototype
tPvErr PvAttrFloat32Get
(
 tPvHandle Camera,
 const char* Name,
 tPvFloat32* pValue
);

Parameters

Camera Handle to open camera.

Name Attribute name.

pValue Value is returned here.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not a Float32 type.

AVT/Prosilica PvAPI Manual Page 17

PvAttrFloat32Set

Set the value of a Float32 attribute.

Prototype
tPvErr PvAttrFloat32Set
(
 tPvHandle Camera,
 const char* Name,
 tPvFloat32 Value
);

Parameters

Camera Handle to open camera.

Name Attribute name.

Value Value to set.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrOutOfRange The value is out of range at this time.

ePvErrForbidden The attribute cannot be set at this time.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not a Float32 type.

AVT/Prosilica PvAPI Manual Page 18

PvAttrInfo

Get information, such as data type and access mode, on a particular attribute.

Prototype
tPvErr PvAttrInfo
(
 tPvHandle Camera,
 const char* Name,
 tPvAttributeInfo* pInfo
);

Parameters

Camera Handle to open camera.

Name Attribute name.

pInfo The attribute information is copied here.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The attribute does not exist.

Notes

AVT/Prosilica PvAPI Manual Page 19

PvAttrInt64Get

Get the value of an Int64 attribute.

Prototype
tPvErr PvAttrInt64Get
(
 tPvHandle Camera,
 const char* Name,
 tPvInt64* pValue
);

Parameters

Camera Handle to open camera.

Name Attribute name.

pValue Value is returned here.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not an Int64 type.

AVT/Prosilica PvAPI Manual Page 20

PvAttrInt64Set

Set the value of an Int64 attribute.

Prototype
tPvErr PvAttrInt64Set
(
 tPvHandle Camera,
 const char* Name,
 tPvInt64 Value
);

Parameters

Camera Handle to open camera.

Name Attribute name.

Value Value to set.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrOutOfRange The value is out of range at this time.

ePvErrForbidden The attribute cannot be set at this time.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not an Int64 type.

AVT/Prosilica PvAPI Manual Page 21

PvAttrIsAvailable

Query: is the attribute available at this time / for this camera model?

Prototype
tPvErr PvAttrIsAvailable
(
 tPvHandle Camera,
 const char* Name
);

Parameters

Camera Handle to open camera.

Name Attribute name.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess The attribute is available.

ePvErrUnavailable The attribute is unavailable at this time.

ePvErrNotFound The attribute does not exist.

Notes

If an attribute is unavailable, it means the attribute cannot be read or changed.

The result of this query is dynamic. The availability of a particular attribute may change
at any time, depending on the state of the camera and the values of other attributes.

AVT/Prosilica PvAPI Manual Page 22

PvAttrIsValid

Query: is the value of an attribute valid / within range?

Prototype
tPvErr PvAttrIsValid
(
 tPvHandle Camera,
 const char* Name
);

Parameters

Camera Handle to open camera.

Name Attribute name.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess The attribute value is in range.

ePvErrOutOfRange The attribute value is out of range.

ePvErrNotFound The attribute does not exist.

AVT/Prosilica PvAPI Manual Page 23

PvAttrList

List all the attributes applicable to a camera.

Prototype
tPvErr PvAttrList
(
 tPvHandle Camera,
 tPvAttrListPtr* pListPtr,
 unsigned long* pLength
);

Parameters

Camera Handle to open camera.

pListPtr The pointer to the attribute list is returned here. The attribute list
is owned by the PvAPI module, and remains static while the
camera is opened. The attribute list is an array of string pointers.

pLength The length of the attribute list is returned here.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

Example

List the available attributes:
tPvAttrListPtr listPtr;
unsigned long listLength;

if (PvAttrList(Camera, &listPtr, &listLength) == eP vErrSuccess)
{
 for (int i = 0; i < listLength; i++)
 {
 const char* attributeName = listPtr[i];

 printf("Attribute %s\n", attributeName);
 }
}

AVT/Prosilica PvAPI Manual Page 24

PvAttrRangeEnum

Get the set of values for an enumerated attribute.

Prototype
tPvErr PvAttrRangeEnum
(
 tPvHandle Camera,
 const char* Name,
 char* pBuffer,
 unsigned long BufferSize,
 unsigned long* pSize
);

Parameters

Camera Handle to open camera.

Name Attribute name.

pBuffer A comma separated string (no white-space, always null
terminated), representing the enumeration set, is copied here.
This buffer is allocated by the caller.

BufferSize The size of the allocated buffer.

pSize The size of the enumeration set string is returned here. This may
be bigger than BufferSize! Null pointer is allowed.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not an enumeration type.

ePvErrBadParameter The supplied buffer is too small to fit the string

Notes

The enumeration set is dynamic. For some attributes, the set may change under
various circumstances.

AVT/Prosilica PvAPI Manual Page 25

Example

List the acquisition modes (for clarity we use strtok, but please research its limitations):
char enumSet[1000];

if (PvAttrRangeEnum(Camera, "AcquisitionMode",
 enumSet, sizeof(enumSet), NULL) == ePvErrSuccess)
{
 char* member = strtok(enumSet, ","); // strtok is n't always thread safe!

 while (member != NULL)
 {
 printf("Mode %s\n", member);
 member = strtok(NULL, ",");
 }
}

AVT/Prosilica PvAPI Manual Page 26

PvAttrRangeFloat32

Get the value range of a Float32 attribute.

Prototype
tPvErr PvAttrRangeFloat32
(
 tPvHandle Camera,
 const char* Name,
 tPvFloat32* pMin,
 tPvFloat32* pMax
);

Parameters

Camera Handle to open camera.

Name Attribute name.

pMin Minimum value returned here.

pMax Maximum value returned here.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not a Float32 type.

Notes

In some cases, the value range is dynamic.

AVT/Prosilica PvAPI Manual Page 27

PvAttrRangeInt64

Get the value range of an Int64 attribute.

Prototype
tPvErr PvAttrRangeInt64
(
 tPvHandle Camera,
 const char* Name,
 tPvInt64* pMin,
 tPvInt64* pMax
);

Parameters

Camera Handle to open camera.

Name Attribute name.

pMin Minimum value returned here.

pMax Maximum value returned here.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not an Int64 type.

Notes

In some cases, the value range is dynamic.

AVT/Prosilica PvAPI Manual Page 28

PvAttrRangeUint32

Get the value range of a Uint32 attribute.

Prototype
tPvErr PvAttrRangeUint32
(
 tPvHandle Camera,
 const char* Name,
 tPvUint32* pMin,
 tPvUint32* pMax
);

Parameters

Camera Handle to open camera.

Name Attribute name.

pMin Minimum value returned here.

pMax Maximum value returned here.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not a Uint32 type.

Notes

In some cases, the value range is dynamic.

AVT/Prosilica PvAPI Manual Page 29

PvAttrStringGet

Get the value of a string attribute.

Prototype
tPvErr PvAttrStringGet
(
 tPvHandle Camera,
 const char* Name,
 char* pBuffer,
 unsigned long BufferSize,
 unsigned long* pSize
);

Parameters

Camera Handle to open camera.

Name Attribute name.

pBuffer The value string (always null terminated) is copied here. This
buffer is allocated by the caller.

BufferSize The size of the allocated buffer.

pSize The size of the value string is returned here. This may be bigger
than BufferSize! Null pointer is allowed.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not a string type.

AVT/Prosilica PvAPI Manual Page 30

PvAttrStringSet

Set the value of a string attribute.

Prototype
tPvErr PvStringSet
(
 tPvHandle Camera,
 const char* Name,
 const char* Value
);

Parameters

Camera Handle to open camera.

Name Attribute name.

Value The string value (always null terminated).

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrForbidden The attribute cannot be set at this time.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not a string type.

AVT/Prosilica PvAPI Manual Page 31

PvAttrUint32Get

Get the value of a Uint32 attribute.

Prototype
tPvErr PvAttrUint32Get
(
 tPvHandle Camera,
 const char* Name,
 tPvUint32* pValue
);

Parameters

Camera Handle to open camera.

Name Attribute name.

pValue Value is returned here.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not a Uint32 type.

AVT/Prosilica PvAPI Manual Page 32

PvAttrUint32Set

Set the value of a Uint32 attribute.

Prototype
tPvErr PvAttrUint32Set
(
 tPvHandle Camera,
 const char* Name,
 tPvUint32 Value
);

Parameters

Camera Handle to open camera.

Name Attribute name.

Value Value to set.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrOutOfRange The value is out of range at this time.

ePvErrForbidden The attribute cannot be set at this time.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not a Uint32 type.

AVT/Prosilica PvAPI Manual Page 33

PvCameraClose

Close a camera.

Prototype
void PvCameraClose
(
 tPvHandle Camera
);

Parameters

Camera Handle to open camera.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrBadHandle Camera handle is bad.

Notes

Open cameras should always be closed, even if they have been unplugged.

AVT/Prosilica PvAPI Manual Page 34

PvCameraCount

Get the number of Allied Vision Technologies cameras visible to this system.

Prototype
unsigned long PvCameraCount
(
 void
);

Parameters

None.

Return Value

The number of cameras visible to the system.

Notes

The number of cameras is dynamic; it may change at any time.

AVT/Prosilica PvAPI Manual Page 35

PvCameraEventCallbackRegister

Register a callback for any camera specific events

Prototype
tPvErr PvCameraEventCallbackRegister
(

 tPvHandle Camera,
 tPvCameraEventCallback Callback,

void * Context
);

Parameters

Camera Handle to open camera.

Callback Callback function to be registered

Context Defined by the caller. Passed to your callback.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The specified camera could not be found.

Notes

Callback will be issued for any/all enabled events. To enable an event see the
EventNotification and EventSelector attributes.

In the callback function, see the EventID for each element of the EventList parameter to
determine which event(s) are associated with the callback. EventID corresponds to the
Uint32 value of EventID attribute. E.g. EventAcquistionStart = 40000.

AVT/Prosilica PvAPI Manual Page 36

PvCameraEventCallbackUnregister

Unregister a callback for any camera specific events

Prototype
tPvErr PvCameraEventCallbackUnregister
(

 tPvHandle Camera,
 tPvCameraEventCallback Callback,

void * Context
);

Parameters

Camera Handle to open camera.

Callback Callback function to be unregistered

Context Defined by the caller. Passed to your callback.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The specified camera could not be found.

Notes

Unregistering a callback for events will not cause the camera to stop sending events. To
disable an event see the EventNotification and EventSelector attributes.

AVT/Prosilica PvAPI Manual Page 37

PvCameraInfoEx

Get information on a specified camera.

Prototype
tPvErr PvCameraInfoEx
(
 unsigned long UniqueId,
 tPvCameraInfoEx* pInfo,
 unsigned long Size
);

Parameters

UniqueId Unique ID of camera.

pInfo Camera information is returned here.

Size Size of the tPvCameraInfoEx structure

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The specified camera could not be found.

Notes

The specified camera must be visible to the system (i.e. on a local subnet), and using
Allied Vision Technologies’s driver.

See PvCameraListEx (page 41) if you want to retrieve information for all cameras.

AVT/Prosilica PvAPI Manual Page 38

PvCameraInfoByAddrEx

Get information on a camera, specified by its IP address. This function is required if the
GigE camera is not on the local IP subnet.

Prototype
tPvErr PvCameraInfoByAddrEx
(
 unsigned long IpAddr,
 tPvCameraInfoEx* pInfo,
 tPvIpSettings* pIpSettings,
 unsigned long Size
);

Parameters

IpAddr IP address of camera, in network byte order.

pInfo Camera information is returned here.

pIpSettings Camera IP settings is returned here. See PvApi.h.

Size Size of the tPvCameraInfoEx structure

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The specified camera could not be found.

Notes

This function works if a camera is on the other side of an IP gateway. In this case, the
camera's IP address must be known, because it will not be visible to either
PvCameraListEx or PvCameraListUnreachableEx.

AVT/Prosilica PvAPI Manual Page 39

PvCameraIpSettingsChange

Change the IP settings for a GigE Vision camera. This command will work for all
cameras on the local Ethernet network, including "unreachable" cameras.

Prototype
tPvErr PvCameraIpSettingsChange
(
 unsigned long UniqueId,
 const tPvIpSettings* pIpSettings
);

Parameters

UniqueId Unique ID of camera.

pIpSettings Camera IP settings to be applied to the camera. See PvApi.h.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The specified camera could not be found.

Notes

All IP related fields in the tPvIpSettings structure are in network byte order.

This command will not work for cameras accessed through an IP router.

AVT/Prosilica PvAPI Manual Page 40

PvCameraIpSettingsGet

Get the IP settings for a GigE Vision camera. This command will work for all cameras
on the local Ethernet network, including "unreachable" cameras.

Prototype
tPvErr PvCameraIpSettingsGet
(
 unsigned long UniqueId,
 tPvIpSettings* pIpSettings
);

Parameters

UniqueId Unique ID of camera.

pIpSettings Camera IP settings is returned here. See PvApi.h.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The specified camera could not be found.

Notes

All IP related fields in the tPvIpSettings structure are in network byte order.

This command will not work for cameras accessed through an IP router.

AVT/Prosilica PvAPI Manual Page 41

PvCameraListEx

List the Allied Vision Technologies cameras currently visible to this system.

Prototype
unsigned long PvCameraListEx
(
 tPvCameraInfoEx* pList,
 unsigned long ListLength,
 unsigned long* pConnectedNum,
 unsigned long Size
);

Parameters

pList Array of tPvCameraInfoEx, allocated by the caller. The camera
list is returned in this array.

ListLength Length of pList array.

pConnectedNum The number of cameras found is returned here. This may be
greater than ListLength. Null pointer is allowed.

Size Size of the tPvCameraInfoEx structure

Return Value

Number of pList array entries filled, up to ListLength.

Notes

Lists only the cameras which are turned on and using Allied Vision Technologies’s
drivers.

If you expect a particular camera to be present, alternatively you can use
PvCameraInfoEx (page 37) to retrieve more information.

Example

See example for PvCameraOpen on page 43.

AVT/Prosilica PvAPI Manual Page 42

PvCameraListUnreachableEx

List all the cameras currently inaccessible by PvAPI. This lists the GigE Vision cameras
which are connected to the local Ethernet network, but are on a different subnet.

Prototype
unsigned long PvCameraListUnreachableEx
(
 tPvCameraInfoEx* pList,
 unsigned long ListLength,
 unsigned long* pConnectedNum,
 unsigned long Size
);

Parameters

pList Array of tPvCameraInfoEx, allocated by the caller. The camera
list is returned in this array.

ListLength Length of pList array.

pConnectedNum The number of cameras found is returned here. This may be
greater than ListLength. Null pointer is allowed.

Size Size of the tPvCameraInfoEx structure

Return Value

Number of pList array entries filled, up to ListLength.

Notes

Lists only the cameras which are turned on, and connected to the local Ethernet
network but on an inaccessible IP subnet. Usually this means the camera's IP settings
are invalid.

If you expect a particular camera to exist on a different subnet, use
PvCameraInfoByAddr Ex(page 37) to retrieve more information.

Example

See example for PvCameraOpen on page 43.

AVT/Prosilica PvAPI Manual Page 43

PvCameraOpen

Open a camera.

Prototype
tPvErr PvCameraOpen
(
 unsigned long UniqueId,
 tPvAccessFlags AccessFlag,
 tPvHandle* pCamera
);

Parameters

UniqueId Camera’s unique ID. This might be acquired through a previous
call to PvCameraList.

AccessFlag Access mode: monitor (listen only) or master (full control).

pCamera Handle to open camera returned here.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrAccessDenied Camera could not be opened in the requested access
mode, because another application (possibly on another
host) is using the camera.

ePvErrNotFound Camera with the specified unique ID is not found. You
will also get this error if the camera was unplugged
between PvCameraList and PvCameraOpen.

Notes

Camera must be closed (see PvCameraClose on page 33) when no longer required.

AVT/Prosilica PvAPI Manual Page 44

Example
tPvHandle OpenFirstCamera(void)
{
 tPvCameraInfoEx list[10];
 unsigned long numCameras;

 // List available cameras.
 numCameras = PvCameraListEx(list, 10, NULL,sizeof(tPvCameraInfoEx));

 for (unsigned long i = 0; i < numCameras; i++)
 {
 // Find the first unopened camera...
 if (list[i].PermittedAccess == ePvAccessMaster)
 {
 tPvHandle handle;

 // Open the camera.
 if (PvCameraOpen(list[i].UniqueId, &handle) == e PvErrSuccess)
 return handle;
 }
 }
 return 0;

}

AVT/Prosilica PvAPI Manual Page 45

PvCameraOpenByAddr

Open a camera using its IP address. This function can be used to open a GigE Vision
camera located on a different IP subnet.

Prototype
tPvErr PvCameraOpen
(
 unsigned long IpAddr,
 tPvAccessFlags AccessFlag,
 tPvHandle* pCamera
);

Parameters

IpAddr Camera’s IP address, in network byte order.

AccessFlag Access mode: monitor (listen only) or master (full control).

pCamera Handle to open camera returned here.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrAccessDenied Camera could not be opened in the requested access
mode, because another application (possibly on another
host) is using the camera.

ePvErrNotFound Camera with the specified IP address is not found. You
will also get this error if the camera was unplugged
between PvCameraListUnreachable and
PvCameraOpenByAddr.

Notes

Camera must be closed (see PvCameraClose on page 33) when no longer required.

AVT/Prosilica PvAPI Manual Page 46

PvCaptureAdjustPacketSize

Function will determine the maximum packet size supported by the system (ethernet
adapter) and then configure the camera to use this value.

Prototype
tPvErr PvCaptureAdjustPacketSize
(
 tPvHandle Camera,
 unsigned long MaximumPacketSize
);

Parameters

Camera Handle to open camera.

MaximumPacketSize Upper limit: the packet size will not be set higher than this value.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrUnplugged Camera was unplugged.

ePvErrBadSequence Capture already started

Notes

This cannot be called when a capture is in progress.

On power up, Allied Vision Technologies cameras have a packet size of 8228. If your
network does not support this packet size, and you haven’ t called
PvCaptureAdjustPacketSize to detect and set the maximum possible packet size, you
will see dropped frames.

AVT/Prosilica PvAPI Manual Page 47

PvCaptureEnd

Shut down the image capture stream. This resets the FrameCount parameter.

Prototype
tPvErr PvCaptureEnd
(
 tPvHandle Camera,
);

Parameters

Camera Handle to open camera.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrUnplugged Camera was unplugged.

Notes

This cannot be called until the capture queue is empty. Function PvCaptureQueueClear
(page 49) can be used to cancel all remaining frames.

AVT/Prosilica PvAPI Manual Page 48

PvCaptureQuery

Query: has the image capture stream been started? That is, has PvCaptureStart been
called?

Prototype
tPvErr PvCaptureQuery
(
 tPvHandle Camera,
 unsigned long* pIsStarted
);

Parameters

Camera Handle to open camera.

pIsStarted Has the capture stream been started? 1=yes, 0=no.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrUnplugged Camera was unplugged.

AVT/Prosilica PvAPI Manual Page 49

PvCaptureQueueClear

Clear the frame queue. Incomplete frames are returned with status ePvErrCancelled.

Prototype
tPvErr PvCaptureQueueClear
(
 tPvHandle Camera
);

Parameters

Camera Handle to open camera.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrUnplugged Camera was unplugged.

Notes

All applicable frame callbacks are run. After this call completes, all frame callbacks are
complete.

This function cannot be run from a frame callback. See PvCaptureQueueFrame on
page 50.

The completion timing of PvCaptureWaitForFrameDone is indeterminate, i.e. it may or
may not complete before PvCaptureQueueClear completes.

Note that if another frame is being queued at the same time as PvCaptureQueueClear,
the results are indeterminate. If using frame callbacks, be sure to stop re-queuing
frames before your call to PvCaptureQueueClear.

AVT/Prosilica PvAPI Manual Page 50

PvCaptureQueueFrame

Place an image buffer onto the frame queue. This function returns immediately; it does
not wait until the frame has been captured.

Prototype
tPvErr PvCaptureQueueFrame
(
 tPvHandle Camera,
 tPvFrame* pFrame,
 tPvFrameCallback Callback
);

Parameters

Camera Handle to open camera.

pFrame Frame structure which describes the frame buffer. This structure,
unique to each queued frame, must persist until the frame has
been captured.

Callback Callback to run when the frame has been completed (either
successfully, or in error). Optional; null pointer is allowed.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrUnplugged Camera was unplugged.

ePvErrBadSequence You cannot queue frames until the capture stream has
started.

ePvErrQueueFull The frame queue is full.

Notes

PvCaptureQueueFrame cannot be called until the image capture stream has started.

PvCaptureQueueFrame enables the capture of an acquired frame, but it does not
trigger the acquisition; see attributes AcquisitionMode, AcquisitionStart, and
AcquisitionStop.

Before you call PvCaptureQueueFrame, these frame structure fields must be filled:

ImageBuffer Pointer to your allocated image buffer. The allocated
image buffer may be larger than required.

ImageBufferSize Size of your image buffer, in bytes.
AncillaryBuffer Pointer to your allocated ancillary buffer, if

AncillaryBufferSize is non-zero.
AncillaryBufferSize Size of your ancillary buffer, in bytes. Can be 0.

AVT/Prosilica PvAPI Manual Page 51

The use of field Context[4] is defined by the caller.

When the frame is complete, these fields are filled by the driver:

Status tPvErr type error code.
ImageSize Size of this frame, in bytes. May be smaller than

BufferSize.
AncillarySize Ancillary data size, in bytes.
Width Width of this frame.
Height Height of this frame.
RegionX Start of readout region, left.
RegionY Start of readout region, top.
Format Format of this frame (see tPvImageFormat).
BitDepth Bit depth of this frame.
BayerPattern Bayer pattern, if applicable.
FrameCount Rolling frame counter. For GigE Vision cameras, this

corresponds to the block number, which rolls from 1 to
0xFFFF. Reset on PvCaptureEnd.

Timestamp Time of exposure-start, in timestamp units.
PvCaptureQueueFrame is an asynchronous capture mechanism; it returns immediately,
rather than waiting for a frame to complete.

To determine when a frame is complete, use one of these mechanisms:

1. Call PvCaptureWaitForFrameDone
The function PvCaptureWaitForFrameDone blocks the calling thread until the
frame is complete.

2. Use a callback
When the frame is complete, the callback is run on an internal PvAPI thread.
When the callback starts, the frame is complete and you are free to
deallocate both the frame structure and the image buffer. The supplied
callback function must be thread-safe. Note that PvCaptureQueueClear
cannot be run from the callback.

To cancel all the frames on the queue, see PvCaptureQueueClear on page 49.

The capacity of the frame queue is 100 frames. Pushing on the queue 100 frame is in
most case not necessary as the best solution is to reuse previously acquired frames to
store new frames.

AVT/Prosilica PvAPI Manual Page 52

PvCaptureStart

Start the image capture stream. This initializes both the camera and the host in
preparation to capture acquired images.

Prototype
tPvErr PvCaptureStart
(
 tPvHandle Camera
);

Parameters

Camera Handle to open camera.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrUnplugged Camera was unplugged.

ePvErrResources Required system resources were not available.

ePvErrBandwidth Insufficient Firewire bandwidth to start image capture
stream.

Notes

As images arrive from the camera, they are stored in the buffer at the head of the frame
queue. To submit buffers to the frame queue, call PvCaptureQueueFrame (page 50).

This function does not start image acquisition on the camera; rather, it establishes the
data stream. To control image acquisition, see attributes AcquisitionMode,
AcquisitionStart, and AcquisitionStop.

AVT/Prosilica PvAPI Manual Page 53

PvCaptureWaitForFrameDone

Block the calling thread until a frame is complete.

Prototype
tPvErr PvCaptureWaitForFrameDone
(
 tPvHandle Camera,
 const tPvFrame* pFrame,
 unsigned long Timeout
);

Parameters

Camera Handle to open camera.

pFrame Frame structure, as passed to PvCaptureQueueFrame.

Timeout Timeout, in milliseconds. Use PVINFINITE for no timeout.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful, or pFrame is not on the queue.

ePvErrUnplugged Camera was unplugged.

ePvErrTimeout Timeout occurred before exposure completed.

Notes

This function cannot be run from the frame-done callback.

This function waits until the frame is complete. When this function completes, you may
delete or modify your frame structure, and use the contents of the image buffer.

If pFrame is not on the frame queue, ePvErrSuccess is returned. The driver must
assume that if the frame buffer is not on the queue, it is already complete.

AVT/Prosilica PvAPI Manual Page 54

PvCommandRun

Run a command. A command is a "valueless" attribute, which executes a function
when written.

Prototype
tPvErr PvCommandRun
(
 tPvHandle Camera,
 const char* Name
);

Parameters

Camera Handle to open camera.

Name Command (attribute) name.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not a command type.

AVT/Prosilica PvAPI Manual Page 55

PvInitialize

Initialize the PvAPI module. You can’ t call any PvAPI functions, other than PvVersion,
until the module is initialized.

Prototype
tPvErr PvInitialize
(
 void
);

Parameters
None.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrResources Some required system resources were not available.

Notes

After initialization, the PvAPI module will asynchronously search for connected
cameras. It may take some time for cameras to show up, therefore check that
PvCameraCount() does not return 0 before proceeding with a PvCameraList call.

Example
tPvCameraInfoEx list;

if(!PvInitialize())

 {

while(PvCameraCount() == 0)

 Sleep(250); // wait for any camera

PvCameraListEx(&list,1,NULL,sizeof(tPvCameraInfoEx));

 /* … */

}

else

 printf("failed to initialize the API\n");

AVT/Prosilica PvAPI Manual Page 56

PvInitializeNoDiscovery

Initialize the PvAPI module. You can’ t call any PvAPI functions, other than PvVersion,
until the module is initialized.

Prototype
tPvErr PvInitializeNoDiscovery
(
 void
);

Parameters
None.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrResources Some required system resources were not available.

Notes

Using this function instead of PvInitialize will cause the driver to not send regular
discovery broadcast. You will have to rely on knowing the IP of the cameras to access
them.

AVT/Prosilica PvAPI Manual Page 57

PvLinkCallbackRegister

Register a callback for link (interface) events, such as detecting when a camera is
plugged in. When the event occurs, the callback is run.

Prototype
tPvErr PvLinkCallbackRegister
(
 tPvLinkCallback Callback,
 tPvLinkEvent Event,
 void* Context
);

Parameters

Callback Callback to run. Must be thread safe.

Event Event of interest.

Context Defined by the caller. Passed to your callback.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

Notes

Multiple callback functions may be registered with the same event.

The same callback function may be shared by different events.

It is an error to register the same callback function with the same event twice.

Callback must be un-registered by PvLinkCallbackUnRegister (page 58) when no longer
required.

AVT/Prosilica PvAPI Manual Page 58

PvLinkCallbackUnRegister

Un-register a link event callback.

Prototype
tPvErr PvLinkCallbackUnRegister
(
 tPvLinkCallback Callback,
 tPvLinkEvent Event
);

Parameters

Callback Callback to run. Must be thread safe.

Event Event of interest.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound Callback/event is not registered.

AVT/Prosilica PvAPI Manual Page 59

PvUnInitialize

Un-initialize the PvAPI module. This frees system resources used by PvAPI.

Prototype
void PvUnInitialize
(
 void
);

Parameters
None.

Return Value

None.

AVT/Prosilica PvAPI Manual Page 60

PvUtilityColorInterpolate

Perform Bayer-color interpolation on raw bayer images. This algorithm uses the
average value of surrounding pixels.

Prototype
void PvUtilityColorInterpolate
(
 const tPvFrame* pFrame,
 void* BufferRed,
 void* BufferGreen
 void* BufferBlue,
 unsigned long PixelPadding,
 unsigned long LinePadding
);

Parameters

pFrame Raw Bayer image, i.e. source data.

BufferRed Output buffer, pointer to the first red pixel. This buffer is allocated
by the caller.

BufferGreen Output buffer, pointer to the first green pixel. This buffer is
allocated by the caller.

BufferBlue Output buffer, pointer to the first blue pixel. This buffer is
allocated by the caller.

PixelPadding Padding after each pixel written to the output buffer, in pixels. In
other words, the output pointers skip by this amount after each
pixel is written to the caller’s buffer. Typical values:
 RGB or BGR output: 2
 RGBA or BGRA output: 3
 planar output: 0

LinePadding Padding after each line written to the output buffers, in pixels.

Return Value

None.

AVT/Prosilica PvAPI Manual Page 61

Example

Generating a Windows Win32::StretchDIBits compatible BGR buffer from a Bayer8
frame:
 #define ULONG_PADDING(x) (((x+3) & ~ 3) - x)

 unsigned long line_padding = ULONG_PADDING(fram e.Width*3);
 unsigned long line_size = ((frame.Width*3) + li ne_padding;
 unsigned long buffer_size = line_size * frame.H eight;

 ASSERT(frame.Format == ePvFmtBayer8);

 unsigned char* buffer = new unsigned char[buffe r_size];

 PvUtilityColorInterpolate(&frame, &buffer[2], & buffer[1],
 &buffer[0], 2, line_p adding);

AVT/Prosilica PvAPI Manual Page 62

PvVersion

Return the version number of the PvAPI module.

Prototype
void PvVersion
(
 unsigned long* pMajor,
 unsigned long* pMinor
);

Parameters

pMajor Major version number returned here.

pMinor Minor version number returned here.

Notes

This function may be called at any time.

AVT/Prosilica PvAPI Manual Page 63

Contacting Allied Vision Technologies

• Technical information:
http://www.alliedvisiontec.com

• Support:
support@alliedvisiontec.com

Allied Vision Technologies GmbH (Headquarters)
Taschenweg 2a
07646 Stadtroda, Germany
Tel.: +49.36428.677-0
Fax.: +49.36428.677-28
e-mail: info@alliedvisiontec.com

Allied Vision Technologies Canada Inc.
101-3750 North Fraser Way
Burnaby, BC, V5J 5E9, Canada
Tel: +1 604-875-8855
Fax: +1 604-875-8856
e-mail: info@alliedvisiontec.com

Allied Vision Technologies Inc.
38 Washington Street
Newburyport, MA 01950, USA
Toll Free number +1-877-USA-1394
Tel.: +1 978-225-2030
Fax: +1 978-225-2029
e-mail: info@alliedvisiontec.com

