	[image: image26.png]NNNNNNNNNNN

LBT PROJECT

2x8.4m TELESCOPE

	Doc.:
LBT-MIC-TRE-00910-0001

Issue:
draft
pag.:
6 of 83
Date:
02.05.2011

Title:
ARGOS BCU mini-crate SYSTEM DESIGN

	[image: image25.png]NNNNNNNNNNN

LBT PROJECT

2x8.4m TELESCOPE

LBT PROJECT

ARGOS BCU mini-crate

SYSTEM DESIGN

	Document :
	LBT-MIC-TRE-00910-0001

	Issue :
	draft

	Date :
	02.05.2011

	Prepared by :
	MICROGATE
M.Andrighettoni R.Biasi

	

	Checked by :
	R.Biasi
	

	Approved by :
	S.Rizzetto
	

	Released by :
	R.Biasi
	

CHANGE RECORDS

	ISSUE
	DATE
	Author
	Approved
	QA/QC
	SECTION / PARAG. AFFECTED
	REASON/INITIATION

DOCUMENTS/REMARKS

	draft
	02.05.2011
	M. Andrighettoni
	
	
	All
	First draft version

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

TABLE OF CONTENTS

1LBT PROJECT

81
ACRONYMS

92
APPLICABLE DOCUMENTS

103
REFERENCE DOCUMENTS

114
INTRODUCTION

125
SYSTEM DESIGN

155.1
Computational flux description

176
LGS BCU MINI-CRATE FIRMWARE DESCRIPTION

176.1
Firmware configuration

176.2
DSP code uploading

176.2.1
DSP loader file data format

186.2.2
DSP code starting

186.3
DSP memory map

196.3.1
BCU-DSP memory map

196.3.2
DSP-16do-DSP memory map

196.3.3
HVC-DSP memory map

206.4
DSP variables map and description

206.4.1
BCU-DSP variables

216.4.2
DSP-16do-DSP variables

226.4.3
HVC-DSP variables

256.5
NIOS variables map and description

256.5.1
BCU-NIOS variables

276.5.2
DSP-16do-NIOS variables

286.5.3
HVC-NIOS variables

307
LGS BCU MINI-CRATE FIRMWARE INITIALIZATION

307.1
pnCCD pixel map definition

317.2
pnCCD interface registers initialization

337.3
Slope algorithm implementation on DSP-16do board

347.3.1
Dark/Background pixel correction

357.3.2
Common mode pixel correction

367.3.3
Flat-field/gain correction

387.3.4
Centroid computation

407.3.4.1
Definition of sub-apertures pixels

447.3.4.2
Centroid computation vs pixels download

447.3.4.3
Centroid x & y arms coefficients

457.3.4.4
Pixel and sub-aperture weighting function

467.3.4.5
Centroid pixel threshold coefficients

477.3.4.6
Centroid pixel factor n

477.3.4.7
Centroid linear coefficients

487.3.5
Slope offset coefficients

497.3.6
Slope output

507.4
Mirrors update

507.4.1
Slope upload and reordering

527.4.2
LGS tip-tilt slopes computation and TT mirrors update

527.4.3
Secondary mirror update

537.5
Real time diagnostic storage

537.5.1
pnCCD pixel frame diagnostic storage

547.5.2
Diagnostic slope data record storage

577.5.2.1
Combined slope and pixels data record storage

577.5.3
Real time diagnostic storage register initialization

587.5.3.1
RT diagnostic decimation factor

597.5.3.2
MasterBCU mechanism

607.5.4
MPIfR frame acquisition and managing

607.5.5
FLAO and Na slopes acquisition and managing

617.5.6
HVC control board

647.5.6.1
HVC Local actuator servo control loop

657.5.7
FastLink commands

687.5.8
Interface between ARGOS BCU mini-crate and the ARGOS supervisor

737.5.8.1
Ethernet “reset” command

767.5.8.2
Ethernet command to enable/disable input FastLink interfaces

778
Simulating pnCCD frames sequence

789
Real-time computation timing analysis

8210
Conclusion

8311
ANNEXES

8311.1
Connector pin-out for MPIfR serial interface

LIST OF FIGURES

12Figure 1 - LGS BCU integrated mini-crate

14Figure 2 - LGB BCU design scheme

16Figure 3 – Computationa flux block scheme

31Figure 4 – pnCCD frame adopted pixel numbering

39Figure 5 – example of LGS placin in pnCCD frame

40Figure 6 – detail of the sub-apertures placing vs CAMEX borders

41Figure 7 – sub-aperture numbering for DSP #0 (CAMEX #1 and #2)

42Figure 8 – sub-aperture numbering for DSP #1 (CAMEX #3 and #4)

43Figure 9 – sub-aperture pixel numbering

57Figure 10 – diagnostic data records on BCU SDRAM memory

64Figure 11 – Actuator local control loop flow chart

79Figure 12 – Sequence of three pixel frames at 1kHz of frequency

80Figure 13 – Detail of the last phase of slope computation once that the last pixel is arrived

81Figure 14 – Detail of the DSP device of the BCU board

83Figure 15 – RS232/485 Serial connector pin-out

LIST OF TABLES

17Table 1 - BCU mini-crate firmware releases

18Table 2 – DSP loader file format

20Table 3 – BCU-DSP firmware variables description

21Table 4 – DSP-16do-DSP firmware variables description

22Table 5 – dsc_ParamSelector variable description

25Table 6 – HVC-DSP firmware variables description

25Table 7 - BCU NIOS shared memory

26Table 8 – BCU fixed area

27Table 9 – BCU diagnostic area

27Table 10 – DSP-16do NIOS shared memory

28Table 11 – DSP-16do fixed area

28Table 12 – DSP-16do diagnostic area

28Table 13 - HVC NIOS shared memory

29Table 14 – HVC fixed area

29Table 15 – HVC diagnostic area

31Table 16 – Pixel order arriving from fiber channel #0

33Table 17 – Pixel order on DSP memory area

34Table 18 – Pixel offset order for DSP#0 (CAMEX #1 and #2)

35Table 19 – Pixel offset order for DSP#1 (CAMEX #3 and #4)

35Table 20 – CM pixel map for DSP#0 (CAMEX #1 and #2)

36Table 21 – CM pixel map for DSP#1 (CAMEX #3 and #4)

37Table 22 – Pixel gain order for DSP#0 (CAMEX #1 and #2)

38Table 23 – Pixel gain order for DSP#1 (CAMEX #3 and #4)

43Table 24 – Slope pixel pointer map DSP#0 (CAMEX #1 and #2)

44Table 25 – Slope pixel pointer map DSP#1 (CAMEX #3 and #4)

44Table 26 – Centroid computation trigger vector

45Table 27 – Centroid x & y arms coefficients

46Table 28 – Weighting function coefficients for DSP#0

46Table 29 – Weighting function coefficients for DSP#1

47Table 30 – Centroid threshold coefficients for DSP#0

47Table 31 – Centroid threshold coefficients for DSP#1

48Table 32 – Centroid linear coefficients for DSP#0

48Table 33 – Centroid linear coefficients for DSP#1

49Table 34 – Slope offset coefficients for DSP#0

49Table 35 – Slope offset coefficients for DSP#1

49Table 36 – Slope output vector for DSP#0

50Table 37 – Slope output vector for DSP#1

51Table 38 – Concatenated slope output vector from both DSPs

52Table 39 – Final slope vector remapping vector

53Table 40 – Final slope vector to send to DM

55Table 41 – Real-time diagnostic record

55Table 42 – LGS tip-tilt slopes diagnostic record

56Table 43 –Tip-tilt mirrors output voltages diagnostic record

56Table 44 – Tip-tilt mirrors mean position diagnostic record

56Table 45 – APD counters diagnostic record

57Table 46 – Frames number diagnostic record

58Table 47 – Diagnostic storage DSP-16do control registers

58Table 48 – Diagnostic storage BCU control registers

59Table 49 – Decimeation factor vs Frame number

59Table 50 – Decimation factor list

61Table 51 – FLAO solo slope vector data format

61Table 52 – FLAO + Na slope vector data format

62Table 53 – LGS tip-tilt command vector

62Table 54 – TT0 selection matrix data format

63Table 55 – TT0 command offset vector

63Table 56 – TT0 rotation matrix data format

63Table 57 – TT0 feedforward gain vector

65Table 58 – Averaged actuator voltage and position data vector

66Table 59 – FastLink command registers

66Table 60 – FastLink command #0

67Table 61 – FastLink command #1

67Table 62 – FastLink command #2

68Table 63 – FastLink command #3

68Table 64 – FastLink command #4

69Table 65 – Ethernet packet structure

70Table 66 – MGP UDP/IP packet structure

71Table 67 – Devices accessible by the diagnostic communication commands

72Table 68 - MGP commands list

72Table 69 - MGP flags list

73Table 70 - MGP_OP_WRSAME_DSP command

74Table 71 – MGP_OP_RESET_DEVICES command

75Table 72 – Argument of MGP_OP_RESET_DEVICES command

76Table 73 – List and description of the available bit configurations

76Table 74 – FastLink input port selection

77Table 75 – Command sequence for pnCCD emulation procedure

1 ACRONYMS

AO
Adaptive Optics
BCU
Microgate Basic Computational Unit board
CCD
Charge Coupled Device

DM
Deformable Mirror

DSP
Digital Signal Processor

DSP-16do
Microgate 2nd generation DSP board
EOF
End Of File

FLAO
First Light Adaptive Optics

HP
Width unit for 19” chassis, corresponding to 0.2” (5.08mm)

HV
High Voltage

HVC
Microgate High Voltage Control board

LBT
Large Binocular Telescope

LBTC
Large Binocular Telescope Corporation

LGS
Laser Guide Star

Na
Sodium Laser Guide Start

NGS
Natural Guide Star

PCB
Printed Circuit Board

pnCCD
Very fast high resolution detector developed by MP-HLL

TBC
To Be Confirmed

TBD
To Be Defined

TE
Width unit for 19” chassis, corresponding to 0.2” (5.08mm)

TT
Tip-tilt

U
Height unit for 19” chassis, corresponding to 1.75” (44.45mm)

WFS
Wavefront Sensor

2 APPLICABLE DOCUMENTS

[AD1] Gilles Orban de Xivry, "Requirements for the ARGOS BCU", doc. "ARGOS_BCU_v1.3", Revision 1.3 dated 08.09.2010.

[AD2] SIS GmbH, hllframegen-M-0-1-v002.pdf, "HLL Framegenerator User Manual", Revision 0.02 dated 05.06.09

[AD3] Minute of meeting (telecon) held on 05.05.2010, doc. ARGOS-BCU-MOM05052010.doc

[AD4] Matthias Drochner et al., "Implementation of a Gigabit-Link Protocol with the PLX PCI 9054 Interface", doc. " gigalinkenglish_for_microgate.pdf", Version 1.12

[AD5] J.Ziegleder et al, "ARGOS - Advanced Rayleigh Ground layer adaptive Optics System", doc. "argos_pdr_wfs_electronics_081222jz.doc", Issue 1.0 dated 05.11.2008

[AD6] "Fast pnCCD overview", doc. Overview_081213

[AD7] Marcel Elberich, RS485 Tip-tilt communication protocol, doc. "argos_transmission_package-1.pdf" dated 04.08.2010

3 REFERENCE DOCUMENTS

[RD1] Microgate, DSP firmware spread sheet, xls. "ARGOS_CodesMemMap_v1.xls" dated 02.05.2011

4 INTRODUCTION

This document describes the design of the BCU mini-crate for the ARGOS system and all information needed to initialize and to use the BCU mini-crate.

The information provided are complementary to the system initialization Matlab script that is provided together with the project data package. These script is an effective guideline for the final system implementation, together with the details provided by this document.

5 SYSTEM DESIGN

According to [AD1] the BCU mini-crate has been integrated as shown in Figure 1. The main elements in the integrated hardware are:

· one BCU board with the following the interfaces:

· one 1Gbit Ethernet copper link, with standard RJ45 connector, connected to the ARGOS supervisor

· four Fiber Channel optical links, with standard pair LC connector, the first two links are used for the connection with the pnCCD, the third for the connection with the either FLAO or, in a subsequent project phase, with the NaBCU and the fourth for the connection with the secondary mirror.

· one RS485 serial link, with standard Fischer 7 poles connector (see 11.1 for the pin-out scheme), connected to the MPIfR device for TT slope computation

· one 2nd generation DSP board (called DSP-16do) equipped with two ADSP TS201 microcontrollers, used to satisfy the high computational performances requested by ARGOS.

· two HVC boards used to drive the three piezo TT mirrors for the field pointing of the three LGS of WFS. Each board has 6 strain gauge inputs and 6 high voltage outputs, so the first board drives two mirrors (3+3 inputs and outputs) and the second the third mirror, three inputs and outputs are not used.

[image: image1.jpg]s aoo’r
omuu.r user

ehi h3 s

(5 P J(©)
O e \ SENSORS

.)

ht
d

ch0 ch2 e chd4 Q
(o e N SENSORS

Figure 1 - LGS BCU integrated mini-crate

The
[image: image2]
Figure 2
 is the design block of the ARGOS BCU mini-crate, called LGS BCU, with all the interconnection and data flux involved in the real time computation.

[image: image3]
Figure 2 - LGB BCU design scheme

The main elements and the data flux summarized in the design scheme are:

· the arbiter of the entire real time system is the BCU board.

· the ARGOS supervisor is connected with BCU mini-crate using a standard 1Gbit Ethernet link, this link is used for the system initialization, including firmware download, parameters configuration and link + computation enabling. When the system is running the same link is used for the diagnostic data storing, acquisition and monitoring.

· The APD counts and the TT slopes acquired and computed by MPIfR are sent to the BCU using a RS485 link, which protocol is defined in [AD7]. The serial data are temporary stored to a local buffer until the <cr> character arrives indicating an end of packet (EOF). Once the EOF is detected the validity checks are done and in case of no errors, the packet is passed to the BCU-DSP to be included in the slope vector for the DM. There is a dedicated mechanism to ensure that the data transfer to the slope vector is executed in atomic mode.

· The optional FLAO and Na slope vector is connected with the BCU mini-crate using the third Fiber Channel link, if a new set of slope arrives to the ARGOS system it is copied to the BCU-DSP memory with a dedicated mechanism to ensure the atomicity of the upload. The new data set will included in the DM slope vector and passed to the DM together to the next pnCCD slope vector.

· The pnCCD interface is a dedicated module directly linked to the pnCCD controller according to the protocol defined in [AD1]. The received frame is copied to the DSP-16do board and the slope computation is executed, the computation is done in parallel to the pixel download in order to minimize the slope computational time lag.

· Once the computation is completed, the BCU-DSP reads back the new slope vector and collects the new data with the MPIfR TT slopes and, when applicable, the FLAO and Na slopes. The entire vector is prepared according to the DM Switch BCU standard input and sent to the Switch BCU using the fourth Fiber Channel link to start a DM command update mechanism.

· After completion of the DM command update, the system creates and saves the diagnostic record according to [AD1]. The data is stored in the BCU SDRAM bulk memory and, if enabled, downloaded to the ARGOS supervisor using an automatic and very efficient mechanism (called master-BCU). The pnCCD pixel frames are stored to the DSP-16do SDRAM bulk memory, where up to 960 frames at full rate can be stored; the full rate data can be read in off-loading mode, stopping the frame storing and simply reading the DSP-16do SDRAM memory using the Ethernet link, while in real time mode a decimated pixel frame (up to 50 Hz) can be downloaded to the ARGOS supervisor.

5.1 Computational flux description

As general overview Figure 3 shown the sequence activity of the various elements of the mini-crate BCU system and how the activity are linked together when a new pnCCD frame arrives to the BCU fast link interface. The duration of each block is not real, it is just a conceptual timing diagram.

[image: image4]
Figure 3 – Computationa flux block scheme

6 LGS BCU MINI-CRATE FIRMWARE DESCRIPTION
On this chapter there is the complete description of the firmware involved in the BCU mini-crate.

6.1 Firmware configuration

Several different pieces of firmware run on the BCU Mini-Crate system, in particular each board has an FPGA firmware, a NIOS firmware and a DSP firmware. The first two firmware (FPGA and NIOS) are factory downloaded to the on board flash and at the system booting the firmware is automatically uploaded and launched. The update of this firmware could be necessary in case of bugs or system improvement; the new firmware can be uploaded on the on-board flash remotely (not necessary by Microgate) using a dedicated Ethernet procedure. This intervention is not dangerous for the system but should done with attention; we recommend to perform it with the support of Microgate personnel.

Meanwhile the DSP firmware should be downloaded to the DSP controllers at every system restart, the DSP executable file (.ldr extension) is furnished in the delivery packet, the DPS firmware downloading mechanism is described in 6.2.

The present document refers to the firmware releases listed in Table 3, in case of an update of one of the system firmware, also a new document version should be released at least to update Table 3.

	board
	FPGA firmware
	NIOS firmware
	DSP firmware (name and version)

	BCU
	ver. 11.62
	ver. 5.04.0046
	BCUSlopeComputer, ver. 6.00

	DSP-16do
	ver. 8.07
	ver. 5.04.0040
	DSPSlopeComputer, ver. 2.00

	HVC
	ver. 2.01
	ver. 4.02.0020
	HVCMainProgram, ver. 2.00

Table 1 - BCU mini-crate firmware releases
6.2 DSP code uploading

All the DSP devices of the ARGOS BCU mini-crate at the start-up and after a reset are in idle condition. Then the first step of the system initialization is the DSP firmware download, then the control variables initialization and finally the start of the code.

The firmware code can uploaded into the DSP by means of standard 'Write sequential' commands. The code should be sent in fragments whose size does not exceed the maximum allowable Ethernet packed size.

6.2.1 DSP loader file data format

The DSP code is stored in '.ldr' files delivered as part of the data pack of the ARGOS BCU system. This is an ASCII file, structured as a vector of 32 bit words in hex format (0xXXXXXXXX).

The file contains the following fields:

	Field description
	Content
	Length
(32bit words)

	
	
	

	Start of data memory vector. The first 28 bits contain the data length in 32 bit words.
	0x4XXXXXXX
	1

	First address of data memory vector.
	Start address
	1

	Data
	Data
	XXXXXXX

	
	
	

	Start of vector to be zero-filled. The first 28 bits contain the vector length in 32 bit words.
	0x8XXXXXXX
	1

	First address of zero-filled vector. The vector of zeros shall be sent generated and sent according to the length and start address information.
	Start address
	1

	
	
	

	Start of program data. Program starts from location 0x00.
	0x00000000
	256

	
	
	

Table 2 – DSP loader file format

6.2.2 DSP code starting

After sending the code (it might be recommendable to check the code by reading if back and comparing the memory content), the DSP is still idling. To start operation, write 0 (zero) to the DSP memory location 0x180730.

6.3 DSP memory map

Before to enter in the detail of the system parameters initialization it is important to understand the adopted approach used to implement the DSP code. In fact, in order to optimize the real time computation all the ARGOS slopes algorithm and memory allocation has been implemented using a memory “pointer” approach. In the code we have three kinds of variables:

1. the shared memory area where the input or output data is copied typically using a DMA approach;

2. control registers variables used to set in the code the vector dimensions, loops etc.;
3. the pointer to the vectors (or matrices) of the parameters, using this approach the memory allocation of the parameters and of the input/output vectors is not fixed and can be modified by the user.

This approach has the advantage to have, for example, a code completely flexible in terms of number of “common mode”, “contour” or “slope” pixels, number of sub-apertures etc. The drawback is that the system initialization should be done taking care of the DSP memory and that all the DSP registers should be correctly initialized to avoid memory overlapping or leaking, in fact no memory integrity checks are executed by the DSP.

To give an help to the user, an excel spread sheet has been realized, on this excel file there are a minimal set of input parameters to initialize and it automatically optimizes the DSP memory allocation of all three DSP firmware and returns how to initialize the DSP memory; the excel file is called “ARGOS_CodesMemMap_v1.xls” see [RD1].

6.3.1 BCU-DSP memory map

The DSP micro controller mounted on the BCU board is an ADSP TS101, it is equipped with three independent memory banks of 65536 dwords at 32bit each. The typical memory organization is to put the binary code at the beginning of the bank #0 in a fixed area of 4096 dwords.

After this area there is a DSP registers area placed on fixed locations; this area is used as shared memory with other external devices and for this reason it is located area in fixed positions.
Subsequent to the fixed area there are all DSP single variables used in the code for the real time computation, including the vector dimension and the memory pointers to the data vectors, in this area there are also the processing or error counters and a read only area for internal use. In general all these variables can be divided in “control variables” that should be initialized before starting the DSP code, and the “internal variables” that are read-only and should NEVER be overwritten. For a detailed description of all DSP variables see [RD1] - sheet BCUSlopeComputation.

6.3.2 DSP-16do-DSP memory map

The DSP-16do board mounts two ADSP TS201 controllers, more powerful respect to the ADSP TS101, they are equipped with twelve independent memory banks of 65536 dwords at 32bit each. The typical memory organization is to put the binary code in the first bank (called bank #0A) in a fixed area of 4096 dwords.

In the second bank (bank #0B) there is a fixed located DSP registers area, this area is used as shared memory with other external devices and for this reason it is fixed allocated area.

Subsequent to the fixed area there are all DSP single variables used in the code for the real time computation, including the vector dimension and the memory pointers to the data vectors, in this area there are also the processing or error counters and a read only area for internal use. In general all these variables can be divided in “control variable” that should be initialized before to start the DSP code and the “internal variable” that are read only and should NEVER be overwritten. For a detailed description of all DSP variables see [RD1] - sheet DSPSlopeComputation.

6.3.3 HVC-DSP memory map

The HVC board mounts one ADSP TS101 controller, same of the BCU-DSP device.

Similar to the BCU-DSP memory, it is organized putting the binary code at the beginning of the bank #0 in a fixed area of 4096 dwords.
After this area there is a fixed located DSP registers area, this area is used as shared memory with other external devices and for this reason it is fixed allocated area.

Subsequent to the fixed area there are all DSP single variables used in the code for the real time computation, including the vector dimension and the memory pointers to the data vectors, in this area there are also the processing or error counters and a read only area for internal use. In general all these variables can be divided in “control variables” that should be initialized before starting the DSP code, and the “internal variables” that are read-only and should NEVER be overwritten. For a detailed description of all DSP variables see [RD1] - sheet HVCMainProgram.

6.4 DSP variables map and description
6.4.1 BCU-DSP variables
Table 3 shows all the variables that should be initialized in the BCUSlopeComputer code. For the proper initialization and memory locations see [RD1] - sheet BCUSlopeComputation.
	variable name
	type
	description

	sc_DiagnosticFrameDec
	float
	Diagnostic frame decimation, see Table 49

	sc_NumSlopesLGS0
	uint32
	number of slopes of the LGS #0 according to [RD1]

	sc_NumSlopesLGS1
	uint32
	number of slopes of the LGS #1 according to [RD1]

	sc_NumSlopesLGS2
	uint32
	number of slopes of the LGS #1 according to [RD1]

	sc_InvNumSlopesLGS0
	float
	reciprocal of number of sub-apertures of the LGS #0

	sc_InvNumSlopesLGS1
	float
	reciprocal of number of sub-apertures of the LGS #1

	sc_InvNumSlopesLGS2
	float
	reciprocal of number of sub-apertures of the LGS #2

	sc_FlaoNaNumSlopes
	uint32
	number of slopes of the FLAO/Na detectors according to [RD1]

	sc_NumFLTimeout
	uint32
	Counter register with the total fast link communication timeout errors

	sc_NumFLCrcErr
	uint32
	Counter register with the total fast link communication CRC errors

	sc_ReplyVectorPtr
	uint32
	Pointer to the area of the retrieved data from the DSP-16do board

	sc_ExtFlaoNaSlopeVectPtr
	uint32
	Shared memory with the FLAO/Na slope vector received from FLAO or Na BCU

	sc_ExtFlaoNaStartRTRPtr
	uint32
	Shared memory with the start trigger area for the FLAO/Na slope vector

	sc_RemapSlopeVectorPtr
	uint32
	Pointer to the area for the remapping of the retrieved slope vectors from the DSP-16do board to the final slope vector to send to the DM

	sc_HeaderDiagPtr
	uint32
	Pointer to the area of the header of the diagnostic record

	sc_SlopeVectorPtr
	uint32
	Pointer to the area of the final pnCCD slope vector to send to the DM

	sc_RotTTSlopeVectPtr
	uint32
	Pointer to the area of the TT slope vector computed by the MPIfR system to send to the DM

	sc_FlaoNaSlopeVectPtr
	uint32
	Pointer to the area of the FLAO/Na slope vector to send to the DM

	sc_StartRTRPtr
	uint32
	Footer of the slope vector with the start DM reconstructor update trigger.

	sc_TTSlopesVectorPtr
	uint32
	Pointer to the area of the TT slope vector for the field pointing of the WFS

	sc_HVCDiagnosticPtr
	uint32
	Pointer to the area of the HVC diagnostic data

	sc_APDCountersPtr
	uint32
	Pointer to the area of the APD raw counts received from the MPIfR system

	sc_FCVectorPtr
	uint32
	Pointer to the area of the frames counter vector + time stamp

	sc_FooterDiagPtr
	uint32
	Pointer to the area of the footee of the diagnostic record

	sc_FastlinkCmd
	uint32
	Fast link command registers, see 7.5.7

Table 3 – BCU-DSP firmware variables description
6.4.2 DSP-16do-DSP variables
Table 4 shows all the variables that should be initialized in the DSPSlopeComputer code. For the proper initialization and memory locations see [RD1] - sheet DSPSlopeComputation.
	variable name
	type
	description

	dsc_ParamSelector
	uint32
	Variable to select various program options, see Table 5 for the complete description.

	dsc_HalfCCDSelection
	uint32
	Select the left (0) or right (1) half area of the CCD image

	dsc_LineLength
	uint32
	Length of CCD line (number of CCD channels of one CAMEX) according to [RD1]

	dsc_SubapSize
	uint32
	Sub-aperture size (number of pixels) according to [RD1]

	dsc_NumLines
	uint32
	Number of CCD lines of one CAMEX according to [RD1]

	dsc_NumSubaps
	uint32
	Number of sub-apertures processed by each DSP according to [RD1]

	dsc_CMThreshold
	int32
	Maximum threshold for common mode pixels

	dsc_SubapPowerCoeff
	uint32
	Sub-aperture power value selection: 0: n=1, 1: n=1.5

	dsc_DiagnosticFrameDec
	uint32
	Diagnostic frame decimation, see Table 49

	dsc_PixelAreaPtr
	uint32
	Pointer to the shared memory area of the CCD pixels, this point can’t be changed.

	dsc_PixelGainAreaPtr
	uint32
	Pointer to the pixel gain area

	dsc_PixelOffAreaPtr
	uint32
	Pointer to the pixel offset area

	dsc_SubapPixelPtrAPtr
	uint32
	Pointer to the area of the sub-aperture pixel pointers (first bank)

	dsc_SubapPixelPtrBPtr
	uint32
	Pointer to the area of the sub-aperture pixel pointers (second bank)

	dsc_NumSubapsReadyPtr
	uint32
	Pointer to the area of the number of sub-apertures ready to be computed according to the number of lines arrived

	dsc_SubapMaxGainPtr
	uint32
	Pointer to the area of proportional threshold to the maximum pixel for each sub-aperture

	dsc_SubapFixThresholdPtr
	uint32
	Pointer to the area of the fixed threshold for each sub-aperture

	dsc_SubapPixelArmsPtr
	uint32
	Pointer to the area of the pixel arms for the centroid computation

	dsc_SubapLinearCoeffPtr
	
	Pointer to the area of the sub-aperture linearizer coefficients

	dsc_SlopeOffsetAPtr
	uint32
	Pointer to the slope offset coefficients (first bank)

	dsc_SlopeOffsetBPtr
	uint32
	Pointer to the slope offset coefficients (second bank) for atomic parameters update

	dsc_CMPixelMapPtr
	uint32
	Pointer to the area of the common mode pixel pointers

	dsc_SubapPixelWeightPtr
	uint32
	Pointer to the area of the sub-aperture pixel weight coefficients

	dsc_PixelFloatAreaPtr
	uint32
	Pointer to the area of the corrected and float converted pixels

	dsc_SlopeOutputHeaderPtr
	uint32
	Pointer to the area of the slope header

	dsc_SlopeOutputPtr
	uint32
	Pointer to the area of the slope vector

Table 4 – DSP-16do-DSP firmware variables description
Table 5 describes the meaning of each bit of the dsc_ParamSelector word.
	Bit num.
	Description

	0
	parameters block selection 0 = block #0, 1 = block #1 (relevant for ARGOS & RTR)

	1
	not used

	2
	not used

	3
	not used

	4
	not used

	5
	enable (1) or disable (0) the delta command calculation using the actual position of the mirror respect to the old command (relevant for RTR)

	6
	enable (1) or disable (0) the diagnostic data storage to the SDRAM (relevant for ARGOS & RTR) – excluding the pixel frames

	7
	enable (1) or disable (0) the fast-link commands used to send the slope vector to the reconstructor (relevant for ARGOS)

	8
	select between the MDC (0) or MCF (1) reconstructor algorithm (relevant for RTR)

	9
	reserved (for internal enable use only)

	10
	reserved (for internal enable use only)

	11
	enable (1) or disable (0) the DM accelerometers acquisition (relevant for RTR)

	12
	enable (1) or disable (0) the pixel frame transfer from the DSP-16do memory to the BCU memory (relevant for ARGOS)

Table 5 – dsc_ParamSelector variable description

6.4.3 HVC-DSP variables
Table 6 shows all the variables that should be initialized in the HVCMainProgram code. For the proper initialization and memory locations see [RD1] - sheet HVCMainProgram.
	variable name
	type
	description

	hvc_delay_DAC
	uint32
	variable used in the local control loop

	hvc_EnableIsr
	uint32
	enabling register of the local control loop isr

	hvc_MinCommandTT0
	float
	min allowable angular command for TT0 in radian

	hvc_MaxCommandTT0
	float
	max allowable angular command for TT0 in radian

	hvc_MinCommandTT1
	float
	min allowable angular command for TT1 in radian

	hvc_MaxCommandTT1
	float
	max allowable angular command for TT1 in radian

	hvc_SelectionMatrixTT0
	float
	tip-tilt commands selection matrix for TT0

	hvc_RotationMatrixTT0
	float
	tip-tilt to angular command conversion for TT0

	hvc_CommandOffsetTT0
	float
	tip-tilt command offset for TT0

	hvc_FFGainTT0
	float
	command to direct voltage output proportional factor for TT0

	hvc_SelectionMatrixTT1
	float
	tip-tilt commands selection matrix for TT1

	hvc_RotationMatrixTT1
	float
	tip-tilt to angular command conversion for TT1

	hvc_CommandOffsetTT1
	float
	tip-tilt command offset for TT1

	hvc_FFGainTT1
	float
	command to direct voltage output proportional factor for TT1

	hvc_TT0_delay_acc
	uint32
	variable used in the local control loop

	hvc_TT0_num_samples
	uint32
	variable used in the local control loop

	hvc_TT0_delay_counter
	uint32
	variable used in the local control loop

	hvc_TT0_acc_counter
	uint32
	variable used in the local control loop

	hvc_TT0_reset_acc
	uint32
	variable used in the local control loop

	hvc_TT0_inv_num_samples
	float
	variable used in the local control loop

	hvc_TT1_delay_acc
	uint32
	variable used in the local control loop

	hvc_TT1_num_samples
	uint32
	variable used in the local control loop

	hvc_TT1_delay_counter
	uint32
	variable used in the local control loop

	hvc_TT1_acc_counter
	uint32
	variable used in the local control loop

	hvc_TT1_reset_acc
	uint32
	variable used in the local control loop

	hvc_TT1_inv_num_samples
	float
	variable used in the local control loop

	hvc_TT0_pos_command
	float
	variable used in the local control loop

	hvc_TT0_curr_command
	float
	variable used in the local control loop

	hvc_TT0_dist_average
	float
	variable used in the local control loop

	hvc_TT0_curr_average
	float
	variable used in the local control loop

	hvc_TT0_bias_command
	float
	variable used in the local control loop

	hvc_TT0_bias_current
	float
	variable used in the local control loop

	hvc_TT0_cmd_current
	float
	variable used in the local control loop

	hvc_TT0_start_preshaper_cmd
	float
	variable used in the local control loop

	hvc_TT0_final_preshaper_cmd
	float
	variable used in the local control loop

	hvc_TT0_preshaped_cmd
	float
	variable used in the local control loop

	hvc_TT0_step_ptr_preshaper_cmd
	uint32
	variable used in the local control loop

	hvc_TT0_curr_ptr_preshaper_cmd
	uint32
	variable used in the local control loop

	hvc_TT0_start_preshaper_curr
	float
	variable used in the local control loop

	hvc_TT0_final_preshaper_curr
	float
	variable used in the local control loop

	hvc_TT0_preshaped_curr
	float
	variable used in the local control loop

	hvc_TT0_step_ptr_preshaper_curr
	uint32
	variable used in the local control loop

	hvc_TT0_curr_ptr_preshaper_curr
	uint32
	variable used in the local control loop

	hvc_TT0_float_ADC_value
	float
	variable used in the local control loop

	hvc_TT0_dist_B_coeff
	float
	variable used in the local control loop

	hvc_TT0_dist_A_coeff
	float
	variable used in the local control loop

	hvc_TT0_distance
	float
	variable used in the local control loop

	hvc_TT0_delayline_ptr
	uint32
	variable used in the local control loop

	hvc_TT0_pos_current
	float
	variable used in the local control loop

	hvc_TT0_pos_pre_current
	float
	variable used in the local control loop

	hvc_TT0_control_enable
	uint32
	variable used in the local control loop

	hvc_TT0_float_DAC_value
	float
	variable used in the local control loop

	hvc_TT0_sat_DAC_value
	float
	variable used in the local control loop

	hvc_TT0_nsat_DAC_value
	float
	variable used in the local control loop

	hvc_TT0_DAC_N2A_gain
	float
	variable used in the local control loop

	hvc_TT0_DAC_A2bit_gain
	float
	variable used in the local control loop

	hvc_TT0_DAC_bit_offset
	float
	variable used in the local control loop

	hvc_TT0_uint_DAC_value
	uint32
	variable used in the local control loop

	hvc_TT0_post_loop_gain
	float
	variable used in the local control loop

	hvc_TT0_post_smoothed_gain
	float
	variable used in the local control loop

	hvc_TT0_post_smoothed_step
	float
	variable used in the local control loop

	hvc_TT0_pre_loop_gain
	float
	variable used in the local control loop

	hvc_TT0_pre_smoothed_gain
	float
	variable used in the local control loop

	hvc_TT0_pre_smoothed_step
	float
	variable used in the local control loop

	hvc_TT1_pos_command
	float
	variable used in the local control loop

	hvc_TT1_curr_command
	float
	variable used in the local control loop

	hvc_TT1_dist_average
	float
	variable used in the local control loop

	hvc_TT1_curr_average
	float
	variable used in the local control loop

	hvc_TT1_bias_command
	float
	variable used in the local control loop

	hvc_TT1_bias_current
	float
	variable used in the local control loop

	hvc_TT1_cmd_current
	float
	variable used in the local control loop

	hvc_TT1_start_preshaper_cmd
	float
	variable used in the local control loop

	hvc_TT1_final_preshaper_cmd
	float
	variable used in the local control loop

	hvc_TT1_preshaped_cmd
	float
	variable used in the local control loop

	hvc_TT1_step_ptr_preshaper_cmd
	uint32
	variable used in the local control loop

	hvc_TT1_curr_ptr_preshaper_cmd
	uint32
	variable used in the local control loop

	hvc_TT1_start_preshaper_curr
	float
	variable used in the local control loop

	hvc_TT1_final_preshaper_curr
	float
	variable used in the local control loop

	hvc_TT1_preshaped_curr
	float
	variable used in the local control loop

	hvc_TT1_step_ptr_preshaper_curr
	uint32
	variable used in the local control loop

	hvc_TT1_curr_ptr_preshaper_curr
	uint32
	variable used in the local control loop

	hvc_TT1_float_ADC_value
	float
	variable used in the local control loop

	hvc_TT1_dist_B_coeff
	float
	variable used in the local control loop

	hvc_TT1_dist_A_coeff
	float
	variable used in the local control loop

	hvc_TT1_distance
	float
	variable used in the local control loop

	hvc_TT1_delayline_ptr
	uint32
	variable used in the local control loop

	hvc_TT1_pos_current
	float
	variable used in the local control loop

	hvc_TT1_pos_pre_current
	float
	variable used in the local control loop

	hvc_TT1_control_enable
	uint32
	variable used in the local control loop

	hvc_TT1_float_DAC_value
	float
	variable used in the local control loop

	hvc_TT1_sat_DAC_value
	float
	variable used in the local control loop

	hvc_TT1_nsat_DAC_value
	float
	variable used in the local control loop

	hvc_TT1_DAC_N2A_gain
	float
	variable used in the local control loop

	hvc_TT1_DAC_A2bit_gain
	float
	variable used in the local control loop

	hvc_TT1_DAC_bit_offset
	float
	variable used in the local control loop

	hvc_TT1_uint_DAC_value
	uint32
	variable used in the local control loop

	hvc_TT1_post_loop_gain
	float
	variable used in the local control loop

	hvc_TT1_post_smoothed_gain
	float
	variable used in the local control loop

	hvc_TT1_post_smoothed_step
	float
	variable used in the local control loop

	hvc_TT1_pre_loop_gain
	float
	variable used in the local control loop

	hvc_TT1_pre_smoothed_gain
	float
	variable used in the local control loop

	hvc_TT1_pre_smoothed_step
	float
	variable used in the local control loop

	hvc_TT0_pos_coeff
	float
	variable used in the local control loop

	hvc_TT1_pos_coeff
	float
	variable used in the local control loop

	hvc_preshaper_cmd_buffer
	float
	variable used in the local control loop

	hvc_preshaper_curr_buffer
	float
	variable used in the local control loop

Table 6 – HVC-DSP firmware variables description
6.5 NIOS variables map and description

The NIOS firmware (called also housekeeping firmware) is the code that runs in the embedded FPGA microcontroller, the aim of this code is the board initialization, the managing of the diagnostic link (Ethernet link) and the acquisition of the diagnostic of the board. The first two points do not require any user intervention while the diagnostic can be handled by the user.

There are two kinds of diagnostic:

· general diagnostic (temperatures, power consumption, etc.)

· real time diagnostic (storage of the real time records and upload to the supervisor using a dedicated mechanism called master-BCU see 7.5)

The code and the variables are all mapped in the SRAM memory, the following paragraphs describe the mapping of the relevant variables of the NIOS code that are placed in a fixed shared region of the SRAM.
6.5.1 BCU-NIOS variables
The BCU board shared memory is organized as described in Table 7.

	structure
	memory location

(dword based)
	size

(dword)

	BCU fixed
	0x38000
	28

	BCU system diagnostic
	0x3801C
	13

Table 7 - BCU NIOS shared memory

The memory is divided into sub-area the fixed area contains the fixed configuration parameters of the board (e.g. serial number, IP address, etc.), and the control register that can be modified by the user; as described in Table 8. The second (diagnostic) area contains the diagnostic parameters of the board that are continuously updated by the housekeeping firmware, as described in Table 9. From the general diagnostic structure, for the ARGOS BUS system, only the two temperature sensors are relevant, all the others elements are not available.

The two structures described in Table 8 and Table 9 report all the diagnostic variables available on the BCU shared memory area. For the ARGOS mini-crate system just some of them are relevant as indicated in the third column while all the others should be discarded.

	na_bcu_nios_fixed_area_struct
	used for

ARGOS
	brief description

	uint16
	crateID
	NO
	crate identification number

	uint16
	who_ami
	NO
	bus slot identification number

	uint32
	software_release
	YES
	Nios software release Vxx.xx.xxxx

	uint16
	logic_release
	YES
	FPGA logic release Vxx.xx

	uint8
	mac_address[6]
	YES
	MAC address of Ethernet card

	uint8
	ip_address[4]
	YES
	IP address of BCU board

	uint8
	crate_configuration[20]
	YES
	array with the bus configuration for each slot

	uint16
	local_current_threshold
	NO
	threshold of local power current (without sign)

	uint16
	vp_set
	NO
	power voltage set point (positive and negative)

	uint16
	total_current_thres_pos
	NO
	threshold of total positive power current

	uint16
	total_current_thres_neg
	NO
	threshold of total negative power current

	uint32
	frames_counter
	YES
	global counter of the diagnostic frame records stored in SDRAM

	uint32
	relais_board_out
	NO
	status of the first relay board (if used)

	uint16
	serial_number
	YES
	board serial number

	uint16
	pb_serial_number
	NO
	power backplane serial number

	uint32
	fl_port_inuse
	YES
	status of the fast link port

	uint32
	enable_hl_commands
	NO
	flag to enable(1)/disable(0) the Ethernet hot link commands to the MMT secondary mirror

	uint32
	enable_pos_acc
	NO
	flag to enable(1)/disable(0) the reading from MMT secondary mirror of the position accumulation

	uint32
	diagnostic_record_ptr
	YES
	pointer to the DSP memory of the frame diagnostic to save in SDRAM

	uint32
	diagnostic_record_len
	YES
	size of the diagnostic frame record to save in SDRAM (in DWORDs)

	uint16
	enable_master_diag
	YES
	flag to enable(1)/disable(0) the master-BCU mechanism

	uint16
	decimation_factor
	YES
	decimation factor of the diagnostic frames to send via master-BCU

	uint8
	remote_mac_address[6]
	YES
	MAC address of the remote server to send the diagnostic frames

	uint8
	remote_ip_address[4]
	YES
	IP address of the remote server to send the diagnostic frames

	uint16
	remote_udp_port
	YES
	UDP port of the remote server to send the diagnostic frames

	uint32
	rd_diagnostic_record_ptr
	YES
	current SDRAM pointer of the diagnostic frame to send via master-BCU

	uint32
	wr_diagnostic_record_ptr
	YES
	current SDRAM pointer to save the diagnostic frame from DSP memory

	uint32
	rd_byte_serialAIA
	NO
	number of bytes received from the CCD controller via AIA serial link

	uint32
	wr_byte_serialAIA
	NO
	number of bytes to send to the CCD controller via AIA serial link

	na_bcu_diagnostic_struct
	BCU_diagnostic
	YES
	area with the BCU system diagnostic, see Table 9

Table 8 – BCU fixed area
	na_bcu_diagnostic_struct
	used for

ARGOS
	brief description

	int16
	stratix_temp
	YES
	internal FPGA stratix temperature

	int16
	power_temp
	YES
	PCB power area temperature

	uint32
	bck_digitalIO
	NO
	status of MAX7301 (U1) digital IO signals on power backplane

	uint16
	voltage_vccl
	NO
	voltage level of logic rail monitored by AD7927 (U30) on power backplane

	uint16
	voltage_vcca
	NO
	voltage level of positive analogical rail monitored by AD7927 (U30) on power backplane

	uint16
	voltage_vssa
	NO
	voltage level of negative analogical rail monitored by AD7927 (U30) on power backplane

	uint16
	voltage_vccp
	NO
	voltage level of positive power rail monitored by AD7927 (U30) on power backplane

	uint16
	voltage_vssp
	NO
	voltage level of negative power rail monitored by AD7927 (U30) on power backplane

	uint16
	current_vccl
	NO
	electrical current of logic rail monitored by AD7927 (U30) on power backplane

	uint16
	current_vcca
	NO
	electrical current of positive analogical rail monitored by AD7927 (U30) on power backplane

	uint16
	current_vssa
	NO
	electrical current of negative analogical rail monitored by AD7927 (U30) on power backplane

	uint16
	current_vccp
	NO
	electrical current of positive power rail monitored by AD7927 (U31) on power backplane

	uint16
	current_vssp
	NO
	electrical current of negative power rail monitored by AD7927 (U31) on power backplane

	uint16
	total_current_vccp
	NO
	total electrical current of positive power rail monitored by AD7927 (U31) on power backplane

	uint16
	total_current_vssp
	NO
	total electrical current of negative power rail monitored by AD7927 (U31) on power backplane

	uint16
	total_current_vp
	NO
	total absolute electrical current of power rail monitored by AD7927 (U31) on power backplane

	uint16
	in0_temp
	NO
	external temperature sensor #0, monitored by AD7927 (U32) on power backplane

	uint16
	in1_temp
	NO
	external temperature sensor #1, monitored by AD7927 (U32) on power backplane

	uint16
	out0_temp
	NO
	external temperature sensor #2, monitored by AD7927 (U32) on power backplane

	uint16
	out1_temp
	NO
	external temperature sensor #3, monitored by AD7927 (U32) on power backplane

	uint16
	ext_humidity
	NO
	external humidity sensor, monitored by AD7927 (U32) on power backplane

	uint16
	pressure
	NO
	external coolant pressure sensor, monitored by AD7927 (U32) on power backplane

	uint16
	dummy_word
	NO
	not used word

	uint32
	reset_status
	YES
	status of BCU reset lines

Table 9 – BCU diagnostic area
6.5.2 DSP-16do-NIOS variables
The DSP board shared memory is organized as described in Table 10.

	structure
	memory location

(dword based)
	size

(dword)

	DSP fixed
	0x18000
	505

	DSP system diagnostic
	0x181F9
	36

Table 10 – DSP-16do NIOS shared memory

Similarly to the BCU shared memory, also the DSP-16do memory is divided into sub-area the fixed area contains the fixed configuration parameters of the board (e.g. serial number, calibration parameters, etc.) and the control register that can be modified by the user; as described in Table 11. The second (diagnostic) area contains the diagnostic parameters of the board that are continuously updated by the housekeeping firmware, as described in Table 12.
The two structures described in Table 11 and Table 12 report all the diagnostic variables available on the DSP shared memory area. For the ARGOS mini-crate system just some of them are relevant as indicated in the third column while all the others should be discarded.

	na_dsp_nios_fixed_area_struct
	used for

ARGOS
	brief description

	uint8
	nios_interpreter_area[369]
	NO
	shared memory for internal use

	uint16
	who_ami
	NO
	bus slot identification number

	uint16
	logic_release
	YES
	FPGA logic release Vxx.xx

	uint32
	software_release
	YES
	Nios software release Vxx.xx.xxxx

	uint16
	serial_number
	YES
	board serial number

	uint16
	dummy_word
	NO
	dummy word

	uint32
	wesp_values
	NO
	WESP DAC values

	float
	ADC_spi_curr_offset[16]
	NO
	calibration values of SPI ADC diagnostic sensors

	float
	ADC_spi_curr_gain[16]
	NO
	calibration values of SPI ADC diagnostic sensors

	float
	ADC_spi_volt_offset[16]
	NO
	calibration values of SPI ADC diagnostic sensors

	float
	ADC_spi_volt_gain[16]
	NO
	calibration values of SPI ADC diagnostic sensors

	float
	ADC_offset[16]
	NO
	calibration values of ADC capacitive sensor

	float
	ADC_gain[16]
	NO
	calibration values of ADC capacitive sensor

	float
	DAC_offset[16]
	NO
	calibration values of DAC coil drivers

	float
	DAC_gain[16]
	NO
	calibration values of DAC coil drivers

	uint32
	diagnostic_record_ptr
	YES
	pointer to the DSP memory of the frame diagnostic to save in SDRAM

	uint32
	diagnostic_record_len
	YES
	size of the diagnostic frame record to save in SDRAM (in DWORDs)

	uint32
	rd_diagnostic_record_ptr
	YES
	current SDRAM pointer of the diagnostic frame to send via master-BCU

	uint32
	wr_diagnostic_record_ptr
	YES
	current SDRAM pointer to save the diagnostic frame from DSP memory

	na_dsp_diagnostic_struct
	diagnostic_area
	YES
	area with the board system diagnostic, see Table 12

Table 11 – DSP-16do fixed area
	na_dsp_diagnostic_struct
	used for

ARGOS
	brief description

	int16
	stratix_temp
	YES
	internal FPGA stratix temperature

	int16
	power_temp
	YES
	PCB power area temperature

	int16
	dsps_temp
	YES
	PCB DSPs area temperature

	int16
	driverA_temp
	YES
	PCB driver area temperature (point A)

	int16
	driverB_temp
	YES
	PCB driver area temperature (point B)

	uint16
	dummy_word
	NO
	dummy word

	uint32
	driver_status
	NO
	reset and coil lines status

	uint16
	coil_current[16]
	NO
	current of coil drivers

	uint16
	coil_voltage[16]
	NO
	voltage of coil drivers

Table 12 – DSP-16do diagnostic area
6.5.3 HVC-NIOS variables
The HVC board shared memory is organized as described in Table 10.

	structure
	memory location

(dword based)
	size

(dword)

	DSP fixed
	0x18000
	424

	DSP system diagnostic
	0x181A8
	7

Table 13 - HVC NIOS shared memory

Similarly to the BCU shared memory, also the HVC memory is divided into sub-area the fixed area contains the fixed configuration parameters of the board (e.g. serial number, calibration parameters, etc.) and the control register that can be modified by the user; as described in Table 14. The second (diagnostic) area contains the diagnostic parameters of the board that are continuously updated by the housekeeping firmware; as described in Table 15. From the general diagnostic structure, for the ARGOS BUS system, only the four temperature sensors are relevant, all the others elements are not available.

The two structures described in Table 14 and Table 15 report all the diagnostic variables available on the DSP shared memory area. For the ARGOS mini-crate system just some of them are relevant as indicated in the third column while all the others should be discarded.

	na_hvc_nios_fixed_area_struct
	used for

ARGOS
	brief description

	uint8
	nios_interpreter_area[369]
	NO
	shared memory for internal use

	uint16
	who_ami
	NO
	bus slot identification number

	uint16
	logic_release
	YES
	FPGA logic release Vxx.xx

	uint32
	software_release
	YES
	Nios software release Vxx.xx.xxxx

	uint16
	serial_number
	YES
	board serial number

	uint16
	dummy_word
	NO
	dummy word

	float
	ADC_spi_curr_offset[8]
	NO
	calibration values of SPI ADC diagnostic sensors

	float
	ADC_spi_curr_gain[8]
	NO
	calibration values of SPI ADC diagnostic sensors

	float
	ADC_offset[8]
	NO
	calibration values of ADC capacitive sensor

	float
	ADC_gain[8]
	NO
	calibration values of ADC capacitive sensor

	float
	DAC_offset[8]
	NO
	calibration values of DAC coil drivers

	float
	DAC_gain[8]
	NO
	calibration values of DAC coil drivers

	uint32
	diagnostic_record_ptr
	YES
	pointer to the DSP memory of the frame diagnostic to save in SDRAM

	uint32
	diagnostic_record_len
	YES
	size of the diagnostic frame record to save in SDRAM (in DWORDs)

	uint32
	rd_diagnostic_record_ptr
	YES
	current SDRAM pointer of the diagnostic frame to send via master-BCU

	uint32
	wr_diagnostic_record_ptr
	YES
	current SDRAM pointer to save the diagnostic frame from DSP memory

	na_hvc_diagnostic_struct
	diagnostic_area
	YES
	area with the board system diagnostic, see Table 15

Table 14 – HVC fixed area
	na_hvc_diagnostic_struct
	used for

ARGOS
	brief description

	int16
	stratix_temp
	YES
	internal FPGA stratix temperature

	int16
	power_temp
	YES
	PCB power area temperature

	int16
	dsps_temp
	YES
	PCB DSPs area temperature

	int16
	driver_temp
	YES
	PCB driver area temperature

	uint32
	driver_status
	NO
	reset and coil lines status

	uint16
	coil_current[8]
	NO
	current of coil drivers

Table 15 – HVC diagnostic area
7 LGS BCU MINI-CRATE FIRMWARE INITIALIZATION

On this chapter there is the complete description of the firmware variables structure that should be initialized to have the system ready for the real time operations.

7.1 pnCCD pixel map definition

In order to optimize the real time computation, the pnCCD pixel parameters should be remapped according to the data flux in the algorithm computation avoiding data remapping during the real time code execution which requires time reducing the efficiency of the computation.

Trying to simplify the remapping order description reported in the next paragraphs we defined a standard pixel numbering for the entire pnCCD pixels frame starting from 0 for the first pixel in the top left corner and increasing the pixel numbering following with highest priority the CCD line order and then the CCD channel order. The Figure 4 shows the pixel numbering order. According to the data format described in the [AD1] the Table 16 shows the pixel correlation.

[image: image25.png][image: image26.png][image: image5.emf]50 100 150 200 250

50

100

150

200

250

Figure 4 – pnCCD frame adopted pixel numbering

	special word + 3 bytes
	First special word of pnCCD fiber link #1

	frame number
	Frame number of pnCCD fiber link #1

	time stamp MSW
	High part of time stamp of pnCCD fiber link #1

	time stamp LSW
	Low part of time stamp of pnCCD fiber link #1

	
line 0
pix 66
	
line 0
pix 0
	pix #66
	pix #0

	
line 0
pix 198
	
line 0
pix 132
	pix #198
	pix #132

	
line 0
pix 67
	
line 0
pix 1
	pix #67
	pix #1

	
line 0
pix 199
	
line 0
pix 133
	pix #199
	pix #133

	
line 0
pix 68
	
line 0
pix 2
	pix #68
	pix #2

	
line 0
pix 200
	
line 0
pix 134
	pix #200
	pix #134

	……
	……
	……
	……

	
line 0
pix 131
	
line 0
pix 65
	pix #131
	pix #65

	
line 0
pix 263
	
line 0
pix 197
	pix #263
	pix #197

	
line 1
pix 66
	
line 1
pix 0
	pix #330
	pix #264

	
line 1
pix 198
	
line 1
pix 132
	pix #462
	pix #396

	
line 1
pix 67
	
line 1
pix 1
	pix #331
	pix #265

	
line 1
pix 199
	
line 1
pix 133
	pix #463
	pix #397

	……
	……
	……
	……

	……
	……
	……
	……

	……
	……
	……
	……

	
line 131
pix 130
	
line 131
pix 64
	pix #34714
	pix #34648

	
line 131
pix 262
	
line 131
pix 196
	pix #34846
	pix #34780

	
line 131
pix 131
	
line 131
pix 65
	pix #34715
	pix #34649

	
line 131
pix 263
	
line 131
pix 197
	pix #34847
	pix #34781

Table 16 – Pixel order arriving from fiber channel #0
7.2 pnCCD interface registers initialization

The first step of the slope computation is the pixel download, in fact the computation is triggered by the pixel transfer.

The pnCCD interface is implemented in VHDL and it runs in the FPGA of the BCU board. The pnCCD controller is provided with two fiber optic outputs for a parallel download. The protocol is based on standard layer 0 and 1 fiber channel, the highest level is a custom protocol using the 8b/10b special chars in order to optimize the data transfer vs. packet overhead, see [AD2]. The BCU FPGA interface protocol has been designed to be compliant with this protocol. The pixels that arrive to the BCU are processed and forwarded to the DSP-16do for the slope computation according to the DSP firmware.

For the use of the system is important to clarify some aspect of the pixel download, which is optimized for the slope computation:

· First of all there is a flag to enable/disable the pixel download. In case of data transfer disabled, the pixels arrive to the BCU interface but they are discarded at FPGA level, it means that the DSP doesn’t see any pixel and the computation is not executed. Considering that the pnCCD to BCU link protocol doesn’t implement any kind of reply/echo the pnCCD is not informed that the pixel frame has not been processed. Another important aspect is that the enable/disable flag is atomic with the pixel start of frame, so no partial pixel download is generated during the interface enabling or disabling. See 7.5.8.2 for the command syntax.

· The pixels are downloaded to a fixed area of the DSP-16do DSP devices according to the excel spread sheet, the same frame is downloaded in parallel to both DSP devices of the board. It means that the pointer dsc_PixelAreaPtr variable can’t be changed without modifying the BCU Nios firmware. Even if it is possible to modify that pointer, the pixel area has been placed optimizing as much as possible the DSP memory resources so there isn't any reason to modify this pointer apart in case of future modification and/or integration of the slope algorithm.

· The pixels are downloaded at 16bit, the FPGA interface module simply forwards the pixels; while the extraction, conversion in floating point precision and then correction of the pixels is completely done by the DSP firmware.

· Just the whole pixel frame is downloadable (is not possible to define CCD sub-areas or remove some lines or channels), Table 17 describes the frame pixel order downloaded in the DSP memory:
	DSP memory area
	32 bit dword (uin32 + 2 x uint16)

	dsc_PixelArea
	special word + 3 bytes
	First special word of pnCCD fiber link #1

	dsc_PixelArea + 1
	special word + 3 bytes
	First special word of pnCCD fiber link #2

	dsc_PixelArea + 2
	frame number
	Frame number of pnCCD fiber link #1

	dsc_PixelArea + 3
	frame number
	Frame number of pnCCD fiber link #2 (that should be same of the previous one)

	dsc_PixelArea + 4
	time stamp MSW
	High part of time stamp of pnCCD fiber link #1

	dsc_PixelArea + 5
	time stamp MSW
	High part of time stamp of pnCCD fiber link #2

	dsc_PixelArea + 6
	time stamp LSW
	Low part of time stamp of pnCCD fiber link #1

	dsc_PixelArea + 7
	time stamp LSW
	Low part of time stamp of pnCCD fiber link #2

	dsc_PixelArea + 8
	pix #66
	pix #0
	

	dsc_PixelArea + 9
	pix #69498
	pix #69432
	

	dsc_PixelArea + 10
	pix #198
	pix #132
	

	dsc_PixelArea + 11
	pix #69630
	pix #69564
	

	dsc_PixelArea + 12
	pix #67
	pix #1
	

	dsc_PixelArea + 13
	pix #69499
	pix #69433
	

	dsc_PixelArea + 14
	pix #199
	pix #133
	

	dsc_PixelArea + 15
	pix #69631
	pix #69565
	

	dsc_PixelArea + 16
	pix #68
	pix #2
	

	dsc_PixelArea + 17
	pix #69500
	pix #69434
	

	dsc_PixelArea + 18
	pix #200
	pix #134
	

	dsc_PixelArea + 19
	pix #69632
	pix #69566
	

	……
	……
	……
	

	dsc_PixelArea + 268
	pix #131
	pix #65
	

	dsc_PixelArea + 269
	pix #69563
	pix #69497
	

	dsc_PixelArea + 270
	pix #263
	pix #197
	

	dsc_PixelArea + 271
	pix #69695
	pix #69629
	

	dsc_PixelArea + 272
	pix #330
	pix #264
	

	dsc_PixelArea + 273
	pix #69234
	pix #69168
	

	dsc_PixelArea + 274
	pix #462
	pix #396
	

	dsc_PixelArea + 275
	pix #69366
	pix #69300
	

	dsc_PixelArea + 276
	pix #331
	pix #265
	

	dsc_PixelArea + 277
	pix #69235
	pix #69169
	

	dsc_PixelArea + 278
	pix #463
	pix #397
	

	dsc_PixelArea + 279
	pix #69367
	pix #69301
	

	……
	……
	……
	

	……
	……
	……
	

	……
	……
	……
	

	dsc_PixelArea + 34848
	pix #34714
	pix #34648
	

	dsc_PixelArea + 34849
	pix #34978
	pix #34912
	

	dsc_PixelArea + 34850
	pix #34846
	pix #34780
	

	dsc_PixelArea + 34851
	pix #35110
	pix #35044
	

	dsc_PixelArea + 34852
	pix #34715
	pix #34649
	

	dsc_PixelArea + 34853
	pix #34979
	pix #34913
	

	dsc_PixelArea + 34854
	pix #34847
	pix #34781
	

	dsc_PixelArea + 34855
	pix #35111
	pix #35045
	

Table 17 – Pixel order on DSP memory area
· all pixels are downloaded to both DSP devices and setting properly the variable dsc_HalfCCDSelection, we command the DSP firmware to use the even or odd pixels for the algorithm. By default the DSP #0 is used to compute the slopes of the left part of the CCD (CAMEX #1 and #2) and the DSP #1 is used to compute the right part of the CCD (CAMEX #3 and #4).

7.3 Slope algorithm implementation on DSP-16do board

The slope algorithm requested on [AD1] is mainly implemented on the two DSP devices of the DSP-16do board. Each DSP is dedicated for the slope computation of half CCD divided by lines (CAMEX #1 and #2 for DSP #0 and CAMEX #3 and #4 for DSP #1) in order to have almost the same number of centroids to compute for each DSP.

Then the results are passed to the DSP of the BCU board for the slopes reordering, LGS TT slopes and field pointing computation and collection of the slope vector to pass to the DM.

In the DSP-16do DSP devices the computation is mainly divided in pixel correction, centroid computation and slope computation.

The entire computation is reset by the start of frames, which reset the computational machine and prepare the firmware for the new computation.

The pixel correction part is triggered by the number of lines downloaded to the DSP memory. In fact in order to reduce the computation lag, the entire slope algorithm can be executed in parallel with the pixel download. To do this the pnCCD interface, after each line download, includes a second special write command to update the dsc_NumLinesToDo variable with the number of lines downloaded, the DSP firmware is in polling to that variable and as soon as it changes, the pixel correction of that line is executed as described in 7.3.1.

As second step the centroid computation can be done just when a certain number of lines are downloaded, to trigger this second part of the algorithm the firmware includes a vector, pointed by dsc_NumSubapsReadyPtr variable, that should be initialized with the number of slopes that can be computed based on the lines already downloaded and available on memory.

Optimizing as much as possible this mechanism, the computation delay can be really reduced to a minimal delay after that the last CCD pixel had been downloaded.

7.3.1 Dark/Background pixel correction

The first pixel correction is the dark/background simply called offset; this step is done with the pixel still in integer so the pixel offset should be passed in int16 format. The result of the correction is automatically converted to float precision for the rest of the computation.

The pixels offset should be downloaded at the system initialization it the DSP memory area pointed by dsc_PixelOffAreaPtr. The format is the following:

	DSP memory area
	32 bit dword (2 x int16)

	dsc_PixelOffArea
	pix #66
	pix #0

	dsc_PixelOffArea + 1
	pix #198
	pix #132

	dsc_PixelOffArea + 2
	pix #67
	pix #1

	dsc_PixelOffArea + 3
	pix #199
	pix #133

	dsc_PixelOffArea + 4
	pix #68
	pix #2

	dsc_PixelOffArea + 5
	pix #200
	pix #134

	……
	……
	……

	dsc_PixelOffArea + 130
	pix #131
	pix #65

	dsc_PixelOffArea + 131
	pix #263
	pix #197

	dsc_PixelOffArea + 132
	pix #330
	pix #264

	dsc_PixelOffArea + 133
	pix #462
	pix #396

	dsc_PixelOffArea + 134
	pix #331
	pix #265

	dsc_PixelOffArea + 135
	pix #463
	pix #397

	……
	……
	……

	……
	……
	……

	……
	……
	……

	dsc_PixelOffArea + 17420
	pix #34714
	pix #34648

	dsc_PixelOffArea + 17421
	pix #34846
	pix #34780

	dsc_PixelOffArea + 17422
	pix #34715
	pix #34649

	dsc_PixelOffArea + 17423
	pix #34847
	pix #34781

Table 18 – Pixel offset order for DSP#0 (CAMEX #1 and #2)
	DSP memory area
	32 bit dword (2 x int16)

	dsc_PixelOffArea
	pix #69498
	pix #69432

	dsc_PixelOffArea + 1
	pix #69630
	pix #69564

	dsc_PixelOffArea + 2
	pix #69499
	pix #69433

	dsc_PixelOffArea + 3
	pix #69631
	pix #69565

	dsc_PixelOffArea + 4
	pix #69500
	pix #69434

	dsc_PixelOffArea + 5
	pix #69632
	pix #69566

	……
	……
	……

	dsc_PixelOffArea + 130
	pix #69563
	pix #69497

	dsc_PixelOffArea + 131
	pix #69695
	pix #69629

	dsc_PixelOffArea + 132
	pix #69234
	pix #69168

	dsc_PixelOffArea + 133
	pix #69366
	pix #69300

	dsc_PixelOffArea + 134
	pix #69235
	pix #69169

	dsc_PixelOffArea + 135
	pix #69367
	pix #69301

	……
	……
	……

	……
	……
	……

	……
	……
	……

	dsc_PixelOffArea + 17420
	pix #34978
	pix #34912

	dsc_PixelOffArea + 17421
	pix #35110
	pix #35044

	dsc_PixelOffArea + 17422
	pix #34979
	pix #34913

	dsc_PixelOffArea + 17423
	pix #35111
	pix #35045

Table 19 – Pixel offset order for DSP#1 (CAMEX #3 and #4)
In parallel to the pixel offset correction and conversion the DSP firmware executes also the common mode threshold check, the check is done when the pixel is still in integer format and for this reason the variable dsc_CMThreshold should be configured in integer 32bit format.

7.3.2 Common mode pixel correction

The common mode (CM) correction consists in a line to line correction for all pixels (as indicated in the desiderata options of [AD1], we extend the common mode and gain correction to all pixels frame). The common mode coefficients should be computed as average of the common mode pixels for each line, to define the CM pixels we introduced a common mode map where for each pixel should be indicated if it is a CM pixels or not. The CM pixel map has the following format where for each pixel the corresponding bit should be set to 0 if it is not a CM pixel or set to 1 if it is. Notice that just the 4 least significant bits of each 32bit dword are used.
	DSP memory area
	32 bit dword (bit 3 - bit 2 - bit 1 - bit 0)

	dsc_CMPixelMap
	pix #198
	pix #132
	pix #66
	pix #0

	dsc_CMPixelMap + 1
	pix #199
	pix #133
	pix #67
	pix #1

	dsc_CMPixelMap + 2
	pix #200
	pix #134
	pix #68
	pix #2

	……
	……

	dsc_CMPixelMap + 64
	pix #263
	pix #197
	pix #131
	pix #65

	dsc_CMPixelMap + 65
	pix #462
	pix #396
	pix #330
	pix #264

	dsc_CMPixelMap + 66
	pix #463
	pix #397
	pix #331
	pix #265

	……
	……

	dsc_CMPixelMap + 8710
	pix #34846
	pix #34780
	pix #34714
	pix #34648

	dsc_CMPixelMap + 8711
	pix #34847
	pix #34781
	pix #34715
	pix #34649

Table 20 – CM pixel map for DSP#0 (CAMEX #1 and #2)
	DSP memory area
	32 bit dword

	dsc_CMPixelMap
	pix #69630
	pix #69564
	pix #69498
	pix #69432

	dsc_CMPixelMap + 1
	pix #69631
	pix #69565
	pix #69499
	pix #69433

	dsc_CMPixelMap + 2
	pix #69632
	pix #69566
	pix #69500
	pix #69434

	……
	……

	dsc_CMPixelMap + 64
	pix #69695
	pix #69629
	pix #69563
	pix #69497

	dsc_CMPixelMap + 65
	pix #69366
	pix #69300
	pix #69234
	pix #69168

	dsc_CMPixelMap + 66
	pix #69367
	pix #69301
	pix #69235
	pix #69169

	……
	……

	dsc_CMPixelMap + 8710
	pix #35110
	pix #35044
	pix #34978
	pix #34912

	dsc_CMPixelMap + 8711
	pix #35111
	pix #35045
	pix #34979
	pix #34913

Table 21 – CM pixel map for DSP#1 (CAMEX #3 and #4)

7.3.3 Flat-field/gain correction

After the CM correction the next step is the gain correction which is applied to all pixel frame, as already mentioned in 7.3.2. Respect to the gain reported to [AD1] the value to set in the DSP memory is the reciprocal so in the real time computation just a product should be executed instead of a division. The gain vector should be set in the DSP memory area pointed by dsc_PixelGainAreaPtr in single precision float value.

Here the remapped order, for each DSP, of the gain vector:

	DSP memory area
	32 bit dword (float)

	dsc_PixelGainArea
	pix #0

	dsc_PixelOffArea + 1
	pix #66

	dsc_PixelOffArea + 2
	pix #132

	dsc_PixelOffArea + 3
	pix #198

	dsc_PixelOffArea + 4
	pix #1

	dsc_PixelOffArea + 5
	pix #67

	dsc_PixelOffArea + 6
	pix #133

	dsc_PixelOffArea + 7
	pix #199

	dsc_PixelOffArea + 8
	pix #2

	dsc_PixelOffArea + 9
	pix #68

	dsc_PixelOffArea + 10
	pix #134

	dsc_PixelOffArea + 11
	pix #200

	……
	……

	dsc_PixelOffArea + 260
	pix #65

	dsc_PixelOffArea + 261
	pix #131

	dsc_PixelOffArea + 262
	pix #197

	dsc_PixelOffArea + 263
	pix #263

	dsc_PixelOffArea + 264
	pix #264

	dsc_PixelOffArea + 265
	pix #330

	dsc_PixelOffArea + 266
	pix #396

	dsc_PixelOffArea + 267
	pix #462

	dsc_PixelOffArea + 268
	pix #265

	dsc_PixelOffArea + 269
	pix #331

	dsc_PixelOffArea + 270
	pix #397

	dsc_PixelOffArea + 271
	pix #463

	……
	……

	……
	……

	……
	……

	dsc_PixelOffArea + 34840
	pix #34648

	dsc_PixelOffArea + 34841
	pix #34714

	dsc_PixelOffArea + 34842
	pix #34780

	dsc_PixelOffArea + 34843
	pix #34846

	dsc_PixelOffArea + 34844
	pix #34649

	dsc_PixelOffArea + 34845
	pix #34715

	dsc_PixelOffArea + 34846
	pix #34781

	dsc_PixelOffArea + 34847
	pix #34847

Table 22 – Pixel gain order for DSP#0 (CAMEX #1 and #2)
	DSP memory area
	32 bit dword (float)

	dsc_PixelGainArea
	pix #69432

	dsc_PixelOffArea + 1
	pix #69498

	dsc_PixelOffArea + 2
	pix #69564

	dsc_PixelOffArea + 3
	pix #69630

	dsc_PixelOffArea + 4
	pix #69433

	dsc_PixelOffArea + 5
	pix #69499

	dsc_PixelOffArea + 6
	pix #69565

	dsc_PixelOffArea + 7
	pix #69631

	dsc_PixelOffArea + 8
	pix #69434

	dsc_PixelOffArea + 9
	pix #69500

	dsc_PixelOffArea + 10
	pix #69566

	dsc_PixelOffArea + 11
	pix #69632

	……
	……

	dsc_PixelOffArea + 260
	pix #69497

	dsc_PixelOffArea + 261
	pix #69563

	dsc_PixelOffArea + 262
	pix #69629

	dsc_PixelOffArea + 263
	pix #69695

	dsc_PixelOffArea + 264
	pix #69168

	dsc_PixelOffArea + 265
	pix #69234

	dsc_PixelOffArea + 266
	pix #69300

	dsc_PixelOffArea + 267
	pix #69366

	dsc_PixelOffArea + 268
	pix #69169

	dsc_PixelOffArea + 269
	pix #69235

	dsc_PixelOffArea + 270
	pix #69301

	dsc_PixelOffArea + 271
	pix #69367

	……
	……

	……
	……

	……
	……

	dsc_PixelOffArea + 34840
	pix #34912

	dsc_PixelOffArea + 34841
	pix #34978

	dsc_PixelOffArea + 34842
	pix #35044

	dsc_PixelOffArea + 34843
	pix #35110

	dsc_PixelOffArea + 34844
	pix #34913

	dsc_PixelOffArea + 34845
	pix #34979

	dsc_PixelOffArea + 34846
	pix #35045

	dsc_PixelOffArea + 34847
	pix #35111

Table 23 – Pixel gain order for DSP#1 (CAMEX #3 and #4)
7.3.4 Centroid computation

The previous computational steps are executed for each pixels while, from now, the computation involves just the slope pixels, used for the centroid computation first and slope computation after.

The algorithm is structured to compute centroid of sub-apertures of fixed size of 8x8 pixels. To consider smaller centroid in the computation is possible to set to zero the weighting coefficients (see 7.3.4.4) for all the not used pixels. As already mentioned, in order to optimize the computational time on both devices, is very important to balance the number of sub-apertures on each DSP.

Staring from the optical layout of the three LGS in the CCD area, the DSP code has been implemented and optimized with the following constrains:

· each DSP manages two CAMEX;

· one entire sub-aperture MUST stay in the same DSP;

· as result we have that the CAMEX border MUST match the sub-apertures borders, for all the sub-apertures of the central LGS, see Figure 6;

· the number of sub-apertures for each DSP should be even because the computation is done in parallel with two sub-apertures at a time, the dummy sub-aperture can be the last repeated twice;

· moreover the number of sub-apertures should be incremented by two because the pixel maximum value and centroid computations are done in parallel. Additionally, at the beginning of the process the first centroid is computed twice, the first time for the maximum research and the second time for the centroid computation. Also this is done to optimize the DSP computation.
In Figure 5 there is an example of three LGS with 176 sub-apertures for each pupil. In the example the total number of sub-apertures is 528 and the DSP#0 has to calculate 257 sub-apertures while the DSP #1 has to compute 271 sub-apertures and, considering the previous constrains on number of sub-apertures, the final number is 260 and 274 respectively.

[image: image6.emf]50 100 150 200 250

50

100

150

200

250

Figure 5 – example of LGS placin in pnCCD frame

And Figure 6 shows the detail of the sub-apertures placing respect with CAMEX #2 and #3 borders.

[image: image7.emf]115 120 125 130 135 140 145 150

125

130

135

140

145

150

155

160

Figure 6 – detail of the sub-apertures placing vs CAMEX borders

7.3.4.1 Definition of sub-apertures pixels

First of all we have to define the slope pixels and the sub-apertures related to them. To do this we have to initialize the vector dsc_SubapPixelPtrA and dsc_SubapPixelPtrB, pointed respectively by dsc_SubapPixelPtrAPtr and dsc_SubapPixelPtrBPtr. These two vectors should be set equal (they are duplicated for the internal optimization mechanism); for each slope pixel, the vectors contain the pointer to the dsc_PixelArea memory area where the slope pixel is located.

Considering the fixed sub-aperture size of 64 pixels, the dimension of dsc_SubapPixelPtrA and dsc_SubapPixelPtrB vectors is 64 x (number of sub-apertures) for each DSP, the definition of the number of sub-aperture, number of slope pixels, the number of centroid for DSP etc. should respect the constrain indicated in 7.3.4, the excel spread-sheet [RD1] helps the user to initialize properly the DSP registers.

The sub-aperture numbering should follow for each DSP the computational priority according to the pixel download from the pnCCD. This sequence defines also the centroid and slope output order from each DSP.

[image: image8.emf]50 100 150 200 250

50

100

150

200

250

Figure 7 – sub-aperture numbering for DSP #0 (CAMEX #1 and #2)

[image: image9.emf]50 100 150 200 250

50

100

150

200

250

Figure 8 – sub-aperture numbering for DSP #1 (CAMEX #3 and #4)

Similar to the sub-aperture numbering also the sub-aperture pixel numbering should follow the pixel priority download. The Figure 9 shows the pixel order inside the sub-aperture.

[image: image10.emf]6 7 8 9 10 11 12 13 14 15 16

50

51

52

53

54

55

56

57

58

59

60

Figure 9 – sub-aperture pixel numbering
Using the previous pictures Table 24 and Table 25 show the organization of the dsc_SubapPixelPtrA and dsc_SubapPixelPtrB vector.

	DSP memory area
	sub-aperture #
	pixel #
	32 bit dword (uint32)

	dsc_SubapPixelPtr
	0
	0 to 63
	64 pointers to dsc_PixelArea

	dsc_SubapPixelPtr + 64
	1
	
	

	dsc_SubapPixelPtr + 128
	0
	0 to 63
	64 pointers to dsc_PixelArea

	dsc_SubapPixelPtr + 192
	1
	0 to 63
	64 pointers to dsc_PixelArea

	dsc_SubapPixelPtr + 256
	2
	0 to 63
	64 pointers to dsc_PixelArea

	dsc_SubapPixelPtr + 320
	3
	0 to 63
	64 pointers to dsc_PixelArea

	……
	……
	……
	……

	dsc_SubapPixelPtr + 16448
	255
	0 to 63
	64 pointers to dsc_PixelArea

	dsc_SubapPixelPtr + 16512
	256
	0 to 63
	64 pointers to dsc_PixelArea

	dsc_SubapPixelPtr + 16576
	256
	0 to 63
	64 pointers to dsc_PixelArea

Table 24 – Slope pixel pointer map DSP#0 (CAMEX #1 and #2)
	DSP memory area
	sub-aperture #
	pixel #
	32 bit dword (uint32)

	dsc_SubapPixelPtr
	0
	0 to 63
	64 pointers to dsc_PixelArea

	dsc_SubapPixelPtr + 64
	1
	
	

	dsc_SubapPixelPtr + 128
	0
	0 to 63
	64 pointers to dsc_PixelArea

	dsc_SubapPixelPtr + 192
	1
	0 to 63
	64 pointers to dsc_PixelArea

	dsc_SubapPixelPtr + 256
	2
	0 to 63
	64 pointers to dsc_PixelArea

	dsc_SubapPixelPtr + 320
	3
	0 to 63
	64 pointers to dsc_PixelArea

	……
	……
	……
	……

	dsc_SubapPixelPtr + 17344
	269
	0 to 63
	64 pointers to dsc_PixelArea

	dsc_SubapPixelPtr + 17408
	270
	0 to 63
	64 pointers to dsc_PixelArea

	dsc_SubapPixelPtr + 17472
	270
	0 to 63
	64 pointers to dsc_PixelArea

Table 25 – Slope pixel pointer map DSP#1 (CAMEX #3 and #4)
Note that for the consideration above mentioned the first two sub-apertures (#0 and #1) should be repeated twice for internal computational optimization and for the same reason the number of computed slopes should be even and then at the end of the vector we repeated the centroid computation of the last sub-aperture.

7.3.4.2 Centroid computation vs pixels download

Similar to the pixel correction, also the centroid & slope computation can be done in parallel with the pixels download. The computation shall proceed following the pixel downloading process, to do this the dsc_NumSubapsReady vector (defined by dsc_NumSubapsReadyPtr pointer) should be initialized properly.

For each DSP, the vector size is equal to the half number of lines of the pnCCD and should be filled setting for each line downloaded how many slopes the firmware can compute. The Table 26 describes the vector initialization for both DSP devices. Note: initializing the vector, remember that a centroid can be computed only when all the centroid pixels are downloaded.

	DSP memory area
	32 bit dword (uint32)

	dsc_NumSubapsReady
	(number of centroid to compute) / 2 after 1 line downloaded

	dsc_NumSubapsReady + 1
	(number of centroid to compute) / 2 after 2 lines downloaded

	dsc_NumSubapsReady + 2
	(number of centroid to compute) / 2 after 3 lines downloaded

	……
	……

	dsc_NumSubapsReady + 131
	(number of centroid to compute) / 2 after 132 lines downloaded

Table 26 – Centroid computation trigger vector
7.3.4.3 Centroid x & y arms coefficients

The centroid “arms” are the two vectors for the x and y centroid computation from the sub-aperture pixels. The size of this vector depends on the sub-aperture size, fixed in the firmware at 8x8 = 64 pixels, then the size of the dsc_SubapPixelArms vector (pointed by dsc_SubapPixelArmsPtr pointer) is 128. The Table 27 shows the vector structure using the same sub-aperture pixel numbering adopted in Figure 9.

	DSP memory area
	32 bit dword (float)

	dsc_SubapPixelArms
	pixel #0 – x

	dsc_SubapPixelArms + 1
	pixel #0 – y

	dsc_SubapPixelArms + 2
	pixel #1 – x

	dsc_SubapPixelArms + 3
	pixel #1 – y

	dsc_SubapPixelArms + 4
	pixel #2 – x

	dsc_SubapPixelArms + 5
	pixel #2 – y

	……
	……

	dsc_SubapPixelArms + 124
	pixel #62 – x

	dsc_SubapPixelArms + 125
	pixel #62 – y

	dsc_SubapPixelArms + 126
	pixel #63 – x

	dsc_SubapPixelArms + 127
	pixel #63 – y

Table 27 – Centroid x & y arms coefficients
7.3.4.4 Pixel and sub-aperture weighting function

This coefficient (called
[image: image11.wmf]a

i

W

;

 in [AD1]) is a slope pixel and sub-aperture dependant gain coefficient, so the total size of the vector dsc_SubapPixelWeight (pointed by dsc_SubapPixelWeightPtr pointer) is equal to the total number of sub-apertures (including the dummy ones) times the number of sub-aperture pixels.

As already mentioned this coefficient can be used to set some sub-aperture pixels to zero in case of smaller sub-aperture size.

The Table 28 and Table 29 show the vector structure.

	DSP memory area
	32 bit dword (float)

	dsc_SubapPixelWeight
	sub-ap #0 - pixel #0

	dsc_SubapPixelWeight + 1
	sub-ap #1 - pixel #0

	dsc_SubapPixelWeight + 2
	sub-ap #0 - pixel #1

	dsc_SubapPixelWeight + 3
	sub-ap #1 - pixel #1

	dsc_SubapPixelWeight + 4
	sub-ap #0 - pixel #2

	dsc_SubapPixelWeight + 5
	sub-ap #1 - pixel #2

	……
	……

	dsc_SubapPixelWeight + 126
	sub-ap #0 - pixel #63

	dsc_SubapPixelWeight + 127
	sub-ap #1 - pixel #63

	dsc_SubapPixelWeight + 128
	sub-ap #2 - pixel #0

	dsc_SubapPixelWeight + 129
	sub-ap #3 - pixel #0

	……
	……

	dsc_SubapPixelWeight + 16636
	sub-ap #258 - pixel #62

	dsc_SubapPixelWeight + 16637
	sub-ap #259 - pixel #62

	dsc_SubapPixelWeight + 16638
	sub-ap #258 - pixel #63

	dsc_SubapPixelWeight + 16639
	sub-ap #259 - pixel #63

Table 28 – Weighting function coefficients for DSP#0
	DSP memory area
	32 bit dword (float)

	dsc_SubapPixelWeight
	sub-ap #0 - pixel #0

	dsc_SubapPixelWeight + 1
	sub-ap #1 - pixel #0

	dsc_SubapPixelWeight + 2
	sub-ap #0 - pixel #1

	dsc_SubapPixelWeight + 3
	sub-ap #1 - pixel #1

	dsc_SubapPixelWeight + 4
	sub-ap #0 - pixel #2

	dsc_SubapPixelWeight + 5
	sub-ap #1 - pixel #2

	……
	……

	dsc_SubapPixelWeight + 126
	sub-ap #0 - pixel #63

	dsc_SubapPixelWeight + 127
	sub-ap #1 - pixel #63

	dsc_SubapPixelWeight + 128
	sub-ap #2 - pixel #0

	dsc_SubapPixelWeight + 129
	sub-ap #3 - pixel #0

	……
	……

	dsc_SubapPixelWeight + 17532
	sub-ap #272 - pixel #62

	dsc_SubapPixelWeight + 17533
	sub-ap #273 - pixel #62

	dsc_SubapPixelWeight + 17534
	sub-ap #272 - pixel #63

	dsc_SubapPixelWeight + 17535
	sub-ap #273 - pixel #63

Table 29 – Weighting function coefficients for DSP#1
7.3.4.5 Centroid pixel threshold coefficients

According to [AD1], the centroid pixel threshold could be, for each sub-aperture, either a constant value or determined dynamically as a value being proportional to the maximum sub-aperture pixel. To avoid the selection in the real-time computational, the proposed option has been implemented merging the constant and the dynamical part together, then, using the same nomenclature, the final threshold value is:
[image: image12.wmf];max

;

;

~

a

a

T

a

T

a

I

I

I

×

+

=

a

 where
[image: image13.wmf]T

a

I

;

 is the constant sub-aperture dependant threshold coefficient while
[image: image14.wmf];max

a

a

I

×

a

 is the dynamical sub-aperture dependant threshold coefficient. For the final centroid computation, setting the either the constant threshold or the dynamical gain
[image: image15.wmf]a

a

 to zero is possible to disable the first or the second contribution.

Note: concerning the requirements in [AD1], the dynamical gain that is a constant for all sub-apertures, the implemented algorithm provides a sub-aperture dependant dynamical gain, to allow the maximum flexibility in the algorithm implementation.

The two coefficient vectors, dynamical gain and constant threshold respectively, should be saved in dsc_SubapMaxGain (pointed by dsc_SubapMaxGainPtr pointer) and dsc_SubapFixThreshold (pointed by dsc_SubapFixThresholdPtr pointer) and organized as shown in Table 30 and Table 31.

	DSP memory area
	32 bit dword (float)

	dsc_SubapMaxGain
	dsc_SubapFixThreshold
	sub-ap #0

	dsc_SubapMaxGain + 1
	dsc_SubapFixThreshold + 1
	sub-ap #1

	dsc_SubapMaxGain + 2
	dsc_SubapFixThreshold + 2
	sub-ap #2

	dsc_SubapMaxGain + 3
	dsc_SubapFixThreshold + 3
	sub-ap #3

	dsc_SubapMaxGain + 4
	dsc_SubapFixThreshold + 4
	sub-ap #4

	dsc_SubapMaxGain + 5
	dsc_SubapFixThreshold + 5
	sub-ap #5

	……
	……
	……

	dsc_SubapMaxGain + 258
	dsc_SubapFixThreshold + 258
	sub-ap #258

	dsc_SubapMaxGain + 259
	dsc_SubapFixThreshold + 259
	sub-ap #259

Table 30 – Centroid threshold coefficients for DSP#0
	DSP memory area
	32 bit dword (float)

	dsc_SubapMaxGain
	dsc_SubapFixThreshold
	sub-ap #0

	dsc_SubapMaxGain + 1
	dsc_SubapFixThreshold + 1
	sub-ap #1

	dsc_SubapMaxGain + 2
	dsc_SubapFixThreshold + 2
	sub-ap #2

	dsc_SubapMaxGain + 3
	dsc_SubapFixThreshold + 3
	sub-ap #3

	dsc_SubapMaxGain + 4
	dsc_SubapFixThreshold + 4
	sub-ap #4

	dsc_SubapMaxGain + 5
	dsc_SubapFixThreshold + 5
	sub-ap #5

	……
	……
	……

	dsc_SubapMaxGain + 272
	dsc_SubapFixThreshold + 272
	sub-ap #272

	dsc_SubapMaxGain + 273
	dsc_SubapFixThreshold + 273
	sub-ap #273

Table 31 – Centroid threshold coefficients for DSP#1

7.3.4.6 Centroid pixel factor n
The centroid computation algorithm the centroid pixels minus the centroid threshold should be increased for a power factor n. The selection between 1 and 1.5 of the factor is done setting properly the variable dsc_SubapPowerCoeff: setting 0 the n factor is set to 1 and setting 1 the factor n is set to 1.5.

7.3.4.7 Centroid linear coefficients

To complete the centroid computation, an additional centroid linearization coefficient (called
[image: image16.wmf]a

g

 in [AD1]) is applied to the centroid.

The coefficient vector is saved in dsc_SubapLinearCoeff (pointed by dsc_SubapLinearCoeffPtr pointer) and organized as shown in Table 32 and Table 33.

	DSP memory area
	32 bit dword (float)

	dsc_SubapLinearCoeff
	sub-ap #0

	dsc_SubapLinearCoeff + 1
	sub-ap #1

	dsc_SubapLinearCoeff + 2
	sub-ap #2

	dsc_SubapLinearCoeff + 3
	sub-ap #3

	dsc_SubapLinearCoeff + 4
	sub-ap #4

	dsc_SubapLinearCoeff + 5
	sub-ap #5

	……
	……

	dsc_SubapLinearCoeff + 258
	sub-ap #258

	dsc_SubapLinearCoeff + 259
	sub-ap #259

Table 32 – Centroid linear coefficients for DSP#0
	DSP memory area
	32 bit dword (float)

	dsc_SubapLinearCoeff
	sub-ap #0

	dsc_SubapLinearCoeff + 1
	sub-ap #1

	dsc_SubapLinearCoeff + 2
	sub-ap #2

	dsc_SubapLinearCoeff + 3
	sub-ap #3

	dsc_SubapLinearCoeff + 4
	sub-ap #4

	dsc_SubapLinearCoeff + 5
	sub-ap #5

	……
	……

	dsc_SubapLinearCoeff + 272
	sub-ap #272

	dsc_SubapLinearCoeff + 273
	sub-ap #273

Table 33 – Centroid linear coefficients for DSP#1
7.3.5 Slope offset coefficients

The entire computation concludes with the slope computation, according to [AD1] it is obtained subtracting an offset (called
[image: image17.wmf]a

x

,

0

 and
[image: image18.wmf]a

y

,

0

 in [AD1]) to the computed centroid. As requested, the slope offset can be modified on-the-fly during the real time computation and to do this in atomic way we introduced two sets (banks) of offset coefficients. The selection of the bank to use is triggered by the dsc_ParamSelector variable at bit #0 (see Table 5). Setting the bit to 0 the “A” bank is used and setting the bit to 1 the “B” bank is used.

Attention: the use of the dsc_ParamSelector variable is extremely important for the atomicity of the entire AO system. When the ARGOS system is driving the DM, the dsc_ParamSelector variable should set by the ARGOS but the same variable is also passed to the DM for the use of the bit involved in the DM functioning. This approach assures a perfect atomicity of all the operations but requires a perfect synchronization of the activity of the ARGOS system in conjunction with the DM system. In particular for the bit #0, the same bit is also used for the parameters bank selection of the DM system, so if this bit is modified to swap the slope offset bank, also the second DM parameter banks should be updated accordingly.

The coefficient vector should be saved in dsc_SlopeOffsetA and dsc_SlopeOffsetB (pointed by dsc_SlopeOffsetAPtr and dsc_SlopeOffsetAPtr pointers) and organized as shown in Table 34 and Table 35.

	DSP memory area
	32 bit dword (float)

	dsc_SlopeOffsetA
	sub-ap #0 – slope x

	dsc_SlopeOffsetA + 1
	sub-ap #0 – slope y

	dsc_SlopeOffsetA + 2
	sub-ap #1 – slope x

	dsc_SlopeOffsetA + 3
	sub-ap #1 – slope y

	dsc_SlopeOffsetA + 4
	sub-ap #2 – slope x

	dsc_SlopeOffsetA + 5
	sub-ap #2 – slope y

	……
	……

	dsc_SlopeOffsetA + 516
	sub-ap #258 – slope x

	dsc_SlopeOffsetA + 517
	sub-ap #258 – slope y

	dsc_SlopeOffsetA + 518
	sub-ap #259 – slope x

	dsc_SlopeOffsetA + 519
	sub-ap #259 – slope y

Table 34 – Slope offset coefficients for DSP#0
	DSP memory area
	32 bit dword (float)

	dsc_SlopeOffsetA
	sub-ap #0 – slope x

	dsc_SlopeOffsetA + 1
	sub-ap #0 – slope y

	dsc_SlopeOffsetA + 2
	sub-ap #1 – slope x

	dsc_SlopeOffsetA + 3
	sub-ap #1 – slope y

	dsc_SlopeOffsetA + 4
	sub-ap #2 – slope x

	dsc_SlopeOffsetA + 5
	sub-ap #2 – slope y

	……
	……

	dsc_SlopeOffsetA + 544
	sub-ap #272 – slope x

	dsc_SlopeOffsetA + 545
	sub-ap #272 – slope y

	dsc_SlopeOffsetA + 546
	sub-ap #273 – slope x

	dsc_SlopeOffsetA + 547
	sub-ap #273 – slope y

Table 35 – Slope offset coefficients for DSP#1

7.3.6 Slope output

At this point the slope computation is terminated and the slope output vector is ready. The output is saved in dsc_SlopeOutput (pointed by dsc_SlopeOutputPtr pointer) and organized as shown in Table 36 and Table 37.

	DSP memory area
	32 bit dword (float)

	dsc_SlopeOutput
	sub-ap #0 – slope x

	dsc_SlopeOutput + 1
	sub-ap #0 – slope y

	dsc_SlopeOutput + 2
	sub-ap #1 – slope x

	dsc_SlopeOutput + 3
	sub-ap #1 – slope y

	dsc_SlopeOutput + 4
	sub-ap #2 – slope x

	dsc_SlopeOutput + 5
	sub-ap #2 – slope y

	……
	……

	dsc_SlopeOutput + 516
	sub-ap #258 – slope x

	dsc_SlopeOutput + 517
	sub-ap #258 – slope y

	dsc_SlopeOutput + 518
	sub-ap #259 – slope x

	dsc_SlopeOutput + 519
	sub-ap #259 – slope y

Table 36 – Slope output vector for DSP#0
	DSP memory area
	32 bit dword (float)

	dsc_SlopeOutput
	sub-ap #0 – slope x

	dsc_SlopeOutput + 1
	sub-ap #0 – slope y

	dsc_SlopeOutput + 2
	sub-ap #1 – slope x

	dsc_SlopeOutput + 3
	sub-ap #1 – slope y

	dsc_SlopeOutput + 4
	sub-ap #2 – slope x

	dsc_SlopeOutput + 5
	sub-ap #2 – slope y

	……
	……

	dsc_SlopeOutput + 544
	sub-ap #272 – slope x

	dsc_SlopeOutput + 545
	sub-ap #272 – slope y

	dsc_SlopeOutput + 546
	sub-ap #273 – slope x

	dsc_SlopeOutput + 547
	sub-ap #273 – slope y

Table 37 – Slope output vector for DSP#1
Note: the previous vectors contain also the dummy slopes computed from the dummy centroid (the first 4 and the last 2 slopes). Here the dummy values are maintained and will be discarded by the DSP of the BCU board as described in 7.4.1.

Once that the entire computation is completed the dsc_SlopesCompleted register is set to one to notify to the DSP of the BCU board that a new set of slopes is ready to be sent to the DM, see 7.4.

7.4 Mirrors update

Now that the slopes are calculated the new slope vector should be passed to the BCU-DSP device for the final activities, the mirrors update and the diagnostic storage.

7.4.1 Slope upload and reordering

The triggering of the end of the slope computation is done by the dsc_SlopesCompleted register. After the end of the pixel download, the BCU-DSP device starts polling to that DSP-16do DSP register until it is set to 1. With this notification, the BCU-DSP firmware launches the slope vectors transfer from both DSP devices of DSP-16do boards.

According to the format described in Table 38, the data transfer puts the two vectors read from both DSP-16do memory areas in the BCU-DSP memory area pointed by sc_ReplyVectorPtr. Note that the two vectors have the same size, in fact the command transfer is not able to read back from the two DSP devices two different buffer sizes.

	DSP memory area
	32 bit dword (float)

	sc_ReplyVector
	special word + 3 bytes

	sc_ReplyVector + 1
	frame number

	sc_ReplyVector + 2
	time stamp MSW

	sc_ReplyVector + 3
	time stamp LSW

	sc_ReplyVector + 4
	internal frame counter

	sc_ReplyVector + 5
	dsc_ParamSelector

	sc_ReplyVector + 6
	not used (0)

	sc_ReplyVector + 7
	not used (0)

	sc_ReplyVector + 8
	sub-ap #0 – slope x – DSP #0

	sc_ReplyVector + 9
	sub-ap #0 – slope y – DSP #0

	sc_ReplyVector + 10
	sub-ap #1 – slope x – DSP #0

	sc_ReplyVector + 11
	sub-ap #1 – slope y – DSP #0

	sc_ReplyVector + 12
	sub-ap #2 – slope x – DSP #0

	sc_ReplyVector + 13
	sub-ap #2 – slope y – DSP #0

	……
	……

	sc_ReplyVector + 552
	sub-ap #272 – slope x – DSP #0

	sc_ReplyVector + 553
	sub-ap #272 – slope y – DSP #0

	sc_ReplyVector + 554
	sub-ap #273 – slope x – DSP #0

	sc_ReplyVector + 555
	sub-ap #273 – slope y – DSP #0

	sc_ReplyVector + 556
	special word + 3 bytes

	sc_ReplyVector + 557
	frame number

	sc_ReplyVector + 558
	time stamp MSW

	sc_ReplyVector + 559
	time stamp LSW

	sc_ReplyVector + 560
	internal frame counter

	sc_ReplyVector + 561
	dsc_ParamSelector

	sc_ReplyVector + 562
	not used (0)

	sc_ReplyVector + 563
	not used (0)

	sc_ReplyVector + 564
	sub-ap #0 – slope x – DSP #1

	sc_ReplyVector + 565
	sub-ap #0 – slope y – DSP #1

	sc_ReplyVector + 566
	sub-ap #1 – slope x – DSP #1

	sc_ReplyVector + 567
	sub-ap #1 – slope y – DSP #1

	……
	……

	sc_ReplyVector + 1107
	sub-ap #272 – slope x – DSP #1

	sc_ReplyVector + 1108
	sub-ap #272 – slope y – DSP #1

	sc_ReplyVector + 1109
	sub-ap #273 – slope x – DSP #1

	sc_ReplyVector + 1111
	sub-ap #273 – slope y – DSP #1

Table 38 – Concatenated slope output vector from both DSPs
This read back vector contains all the slopes including the dummy slopes used to optimize the real-time computation and, when applicable, the not used slopes if any. From this vector the user has to extract and reorder the used slopes and put them in the final vector sc_SlopeVector (pointed by sc_SlopeVectorPtr pointer) that is sent to the secondary mirror. This operation is very important because the used slopes and in particular the slope order should match the reconstructor parameters setup.

The final number of slopes is defined for each LGS setting the variables sc_NumSlopesLGS0, sc_NumSlopesLGS1 and sc_NumSlopesLGS2 according to the excel spread sheet (see [RD1]).

Instead, to extract the slopes from the sc_ReplyVector and put correctly in the sc_SlopeVector area, the sc_RemapSlopeVector (which size is sc_NumSlopesLGS0+sc_NumSlopesLGS1+sc_NumSlopesLGS2) should be initialized as described in Table 39.

	DSP memory area
	32 bit dword (uint32)

	sc_RemapSlopeVector
	slope #0 – LGS #0

	sc_RemapSlopeVector + 1
	slope #1 – LGS #0

	sc_RemapSlopeVector + 2
	slope #2 – LGS #0

	sc_RemapSlopeVector + 3
	slope #3 – LGS #0

	……
	……

	sc_RemapSlopeVector + nLGS0 – 2
	slope #(nLGS0 – 2) – LGS #0

	sc_RemapSlopeVector + nLGS0 – 1
	slope #(nLGS0 – 1) – LGS #0

	sc_RemapSlopeVector + nLGS0
	slope #0 – LGS #1

	sc_RemapSlopeVector + nLGS0 + 1
	slope #1 – LGS #1

	……
	……

	sc_RemapSlopeVector + nLGS0 + nLGS1 – 2
	slope #(nLGS1 – 2) – LGS #1

	sc_RemapSlopeVector + nLGS0 + nLGS1 – 1
	slope #(nLGS1 – 1) – LGS #1

	sc_RemapSlopeVector + nLGS0 + nLGS1
	slope #0 – LGS #2

	sc_RemapSlopeVector + nLGS0 + nLGS1 + 1
	slope #1 – LGS #2

	……
	……

	sc_RemapSlopeVector + nLGS0 + nLGS1 + nLGS2 – 2
	slope #(nLGS1 – 2) – LGS #2

	sc_RemapSlopeVector + nLGS0 + nLGS1 + nLGS2 – 1
	slope #(nLGS1 – 1) – LGS #2

Table 39 – Final slope vector remapping vector
7.4.2 LGS tip-tilt slopes computation and TT mirrors update

During the slope reordering, the DSP also computes the LGS tip-tilt slopes as the mean (note: in [AD1] was required the median but we modified the algorithm in accordance with Gilles Orban de Xivry) of all slopes for each LGS. Completed the slopes reorder and consequently the LGS tip-tilt computation, the six slopes are sent to the two HVC boards for the field pointing tip-tilt mirrors update (see 7.5.6 for the description of the HVC firmware functioning).

The data transfer uses the high speed link and should be properly initialized; see 7.5.7 for the description of all high speed link commands used in ARGOS design.

7.4.3 Secondary mirror update

Immediately after the TT mirrors update the slope vector is sent to the secondary mirror to execute the reconstructor algorithm and update the DM commands.

The slope vector written to the DM should be compliant with the reconstructor format. As already mentioned the vector is created in sc_SlopeVector and should have a fixed size of 1600 elements (for slopes) and a footer of 4 dwords as described in Table 40. In the same vector there is also the collecting of the MPIfR TT slopes (see 7.5.4) and eventually the FLAO and/or BCU-Na slopes (see 7.5.5). The not used slopes to fill the 1600 elements are set to zero. The footer (pointed by sc_StartRTRPtr) contains the dsp_ParamSelector word for the atomic system update of the parameters and activities and the dsp_FrameCounter to identify the reconstructor outputs and DM commands with the input slopes. The last word of the footer is the triggering register to start the reconstructor algorithm.

	DSP memory area
	32 bit dword (float + uint32)

	sc_SlopeVector
	pnCCD slope #0

	sc_SlopeVector + 1
	pnCCD slope #1

	……
	……

	sc_SlopeVector + npnCCD – 2
	pnCCD slope #(npnCCD – 2)

	sc_SlopeVector + npnCCD – 1
	pnCCD slope #(npnCCD – 1)

	sc_RotTTSlopeVect
	MPIfR TT slope #0

	sc_RotTTSlopeVect + 1
	MPIfR TT slope #1

	……
	……

	sc_RotTTSlopeVect + nTT – 2
	MPIfR TT slope #(nTT – 2)

	sc_RotTTSlopeVect + nTT – 1
	MPIfR TT slope #(nTT – 2)

	sc_FlaoNaSlopeVect
	FLAO_Na slope#0

	sc_FlaoNaSlopeVect + 1
	FLAO_Na slope#1

	……
	……

	sc_FlaoNaSlopeVect + nFLAO_Na – 2
	FLAO_Na slope#(nFLAO_Na – 2)

	sc_FlaoNaSlopeVect + nFLAO_Na – 1
	FLAO_Na slope#(nFLAO_Na – 1)

	sc_FlaoNaSlopeVect + nFLAO_Na
	not used slopes

	……
	

	sc_StartRTR
	dsc_FramesCounter

	sc_StartRTR + 1
	dsc_ParamSelector

	sc_StartRTR + 2
	not used (0)

	sc_StartRTR + 3
	1

Table 40 – Final slope vector to send to DM
The data transfer of this vector uses the high speed link and should be properly initialized; see 7.5.7 for the description of all high speed link commands used in ARGOS design.

7.5 Real time diagnostic storage

Completed the real time computational part, both DSP-16do and BCU boards start with the diagnostic record creation and storing. The DSP-16do board stores the pnCCD pixel frame while the BCU board stores the slope data record.
7.5.1 pnCCD pixel frame diagnostic storage

As mentioned, completed the real time computational part, the DSP device launches an automatic mechanism for the storage of the pnCCD pixel frame. The entire frame is read from the dsc_PixelArea (pointed by dsc_PixelAreaPtr pointer) of the DSP device memory and copied in the SDRAM bulk memory contiguously to the previous pixel frame. The data format of the pixel frame has the same format as reported in Table 17 apart for the first two locations where the internal frame counter (dsc_FramesCounter) and the dsc_ParamSelector register are saved.

Once the end of the SDRAM is reached and there is not enough space for another entire record the system restarts saving the record from the zero position.

The bits to transfer are (264*264+8)*16=1.063Mbit and using the diagnostic link at 2Gbit/s it requires about 0.5ms. Considering the available SDRAM on the DSP-16do board, the number of frames that can be saved on the SDRAM is 960 before to generate the wrap-around of the buffer.

The saved frames can be decimated using the dsc_DiagnosticFrameDec according to the mechanism described in 7.5.3.1.

As requested in [AD1] there are two different frames upload,

· the first one is the off-loading upload used to have the frames at full (or decimated) rate, on this case the user has to stop the diagnostic storage before and read back all (or one part) of the DSP-16do SDRAM memory and form the read buffer he has extract all the frames saved.

· the second method is used to obtain the pixel frame at low frequency but in real-time mode during the system activity. The maximum frequency upload depends to the bandwidth of the service link balanced to the system load at currently is set at 50 Hz. To set a decimated pixel frame storing the user has to set the dsc_DiagnosticFrameDec variable as described in 7.5.3.1. This method works in conjunction with the slope data record storage as described in 7.5.2.1.
7.5.2 Diagnostic slope data record storage

Also for the BCU board, once the real time update of the mirrors is completed, the DSP device creates the diagnostic record in the DSP memory area and launches an automatic mechanism for the storage of the record to the SDRAM bulk memory. The record starts at the DSP memory pointed by sc_HeaderDiagPtr pointer and ends at the DSP memory pointed by sc_FooterDiagPtr + 4 (4 is the size of the sc_FooterDiag vector), the size of the record is fixed as fixed are all the subparts of the record and it is 1628 dwords. Table 41 shows the structure of the diagnostic record.

The record is stored to the BCU–SDRAM memory in sequence respect to the previous one. Once the end of the SDRAM is reached and there is not enough space for another entire record the system restarts saving the record from the zero position.
Considering the fastest frame rate of 1kHz, the total stored data is 1656*32*1000 = 50.537Mbit/s, that should be transferred to the ARGOS supervisor via 1Gbit/s Ethernet link. Even if the bandwidth is not absolutely critical, a dedicated data transfer mechanism (called master-BCU, see 7.5.3.2) is available in order to optimize the data transfer and reduce the transfer load.

As requested in [AD1] also the pnCCD pixel frames should be downloaded to the ARGOS supervisor in real time at low frequency. We can assume a reasonable Ethernet transfer load of ~100Mbit/s (in master-BCU mode), so the maximum acceptable pnCCD pixel frame rate at real time download is 50Hz, in fact (1656*32)*1000 + (264*264*16+8)*50 = 103.711Mbit/s. This rate is double respect to the requested rate in [AD1].

The Table 41 shows the structure of the real-time diagnostic record with a link to the tables of the various sub-blocks.
	DSP memory area
	32 bit dword (float + uint32)
	Size (dwords)

	sc_HeaderDiag
	dsc_FramesCounter
	4

	sc_HeaderDiag + 1
	dsc_ParamSelector
	

	sc_HeaderDiag + 2
	not used (0)
	

	sc_HeaderDiag + 3
	not used (0)
	

	sc_SlopeVector
	npnCCD pnCCD slopes
	1600

	sc_RotTTSlopeVect
	nTT MPIfR TT slopes
	

	sc_FlaoNaSlopeVect
	nFLAO_Na FLAO_Na slopes
	

	……
	not used area
	

	sc_StartRTR
	see Table 40
	4

	sc_TTSlopesVector
	see Table 42
	8

	sc_HVCMeanVoltage
	see Table 43
	12

	sc_HVCMeanPosition
	see Table 44
	12

	sc_APDCounters
	see Table 45
	4

	sc_FCVector
	see Table 46
	8

	sc_FooterDiag
	same of sc_HeaderDiag
	4

Table 41 – Real-time diagnostic record
The sc_TTSlopesVector is a fixed size vector of 8 elements containing the compute LGS tip-tilt slopes, the format is described in Table 42.
	DSP memory area
	32 bit dword (float)

	sc_TTSlopesVector
	TT slope x of LGS #0

	sc_TTSlopesVector + 1
	TT slope y of LGS #0

	sc_TTSlopesVector + 2
	TT slope x of LGS #1

	sc_TTSlopesVector + 3
	TT slope y of LGS #1

	sc_TTSlopesVector + 4
	TT slope x of LGS #2

	sc_TTSlopesVector + 5
	TT slope y of LGS #2

	sc_TTSlopesVector + 6
	not used (0)

	sc_TTSlopesVector + 7
	not used (0)

Table 42 – LGS tip-tilt slopes diagnostic record
The sc_HVCMeanVoltage is a fixed size vector of 12 elements containing the mirror actuator averaged (during the integration time) set voltage of the piezoelectric tip-tilt mirrors, the format is described in Table 43.
	DSP memory area
	32 bit dword (float)

	sc_HVCMeanVoltage
	channel #0 voltage (tip-tilt mirror of LGS #0)

	sc_HVCMeanVoltage + 1
	channel #1 voltage (tip-tilt mirror of LGS #0)

	sc_HVCMeanVoltage + 2
	channel #2 voltage (tip-tilt mirror of LGS #0)

	sc_HVCMeanVoltage + 3
	not used (0)

	sc_HVCMeanVoltage + 4
	channel #0 voltage (tip-tilt mirror of LGS #1)

	sc_HVCMeanVoltage + 5
	channel #1 voltage (tip-tilt mirror of LGS #1)

	sc_HVCMeanVoltage + 6
	channel #2 voltage (tip-tilt mirror of LGS #1)

	sc_HVCMeanVoltage + 7
	not used (0)

	sc_HVCMeanVoltage + 8
	channel #0 voltage (tip-tilt mirror of LGS #2)

	sc_HVCMeanVoltage + 9
	channel #1 voltage (tip-tilt mirror of LGS #2)

	sc_HVCMeanVoltage + 10
	channel #2 voltage (tip-tilt mirror of LGS #2)

	sc_HVCMeanVoltage + 11
	not used (0)

Table 43 –Tip-tilt mirrors output voltages diagnostic record
The sc_HVCMeanPosition is a fixed size vector of 12 elements containing the mirror actuator average position (during the integration time) read by the strain gauges of the piezoelectric tip-tilt mirrors, the format is described in Table 44.
	DSP memory area
	32 bit dword (float)

	sc_HVCMeanPosition
	channel #0 position (tip-tilt mirror of LGS #0)

	sc_HVCMeanPosition + 1
	channel #1 position (tip-tilt mirror of LGS #0)

	sc_HVCMeanPosition + 2
	channel #2 position (tip-tilt mirror of LGS #0)

	sc_HVCMeanPosition + 3
	not used (0)

	sc_HVCMeanPosition + 4
	channel #0 position (tip-tilt mirror of LGS #1)

	sc_HVCMeanPosition + 5
	channel #1 position (tip-tilt mirror of LGS #1)

	sc_HVCMeanPosition + 6
	channel #2 position (tip-tilt mirror of LGS #1)

	sc_HVCMeanPosition + 7
	not used (0)

	sc_HVCMeanPosition + 8
	channel #0 position (tip-tilt mirror of LGS #2)

	sc_HVCMeanPosition + 9
	channel #1 position (tip-tilt mirror of LGS #2)

	sc_HVCMeanPosition + 10
	channel #2 position (tip-tilt mirror of LGS #2)

	sc_HVCMeanPosition + 11
	not used (0)

Table 44 – Tip-tilt mirrors mean position diagnostic record
The sc_APDcounters is a fixed size vector of 4 elements containing the APD counters received from the last MPIfR serial data packet, the format is described in Table 45.
	DSP memory area
	32 bit dword (uint16)

	sc_APDCounters
	APD counter #1

	sc_APDCounters + 1
	APD counter #2

	sc_APDCounters + 2
	APD counter #3

	sc_APDCounters + 3
	APD counter #4

Table 45 – APD counters diagnostic record
The sc_FCVector is a fixed size vector of 4 elements with the collecting of all frame counters and the time stamp of the last pnCCD pixel frame, the format is described in Table 46.
	DSP memory area
	32 bit dword (uint32 TBC)

	sc_FCVector
	dsc_FrameCounter

	sc_FCVector + 1
	pnCCD frame number

	sc_FCVector + 2
	time stamp MSW

	sc_FCVector + 3
	time stamp LSW

	sc_FCVector + 4
	MPIfR frame number

	sc_FCVector + 5
	MPIfR status byte

	sc_FCVector + 6
	flao_FramesCounter

	sc_FCVector + 7
	na_FramesCounter

Table 46 – Frames number diagnostic record
7.5.2.1 Combined slope and pixels data record storage

As requested in [AD1] the system should be able to store and collect the slope data record in parallel with a decimated set of pixel frames. To do this we introduced a second flag (bit #12) in the dsc_ParamSelector word (see Table 5) to enable this second level of storage mechanism, in fact the first flag (bit #6) enables just the “local” diagnostic storage of the slope records in the BCU board and the pixel frames in the DSP-16do board.
If the bit #12 of dsp_ParamSelector word is enabled ALL the pixels frames saved in the local DSP-16do SDRAM memory (according to the dsc_DiagnosticFrameDec) are also transferred to the BCU SDRAM memory. For this reason, when the bit #12 of dsc_ParamSelector word is enabled, the setting of the decimation counter word should be set carefully according to the maximum data bandwidth.
Figure 10 shows how the records are stored in the BCU SDRAM, with a diagnostic configuration of no decimation on data slope records (sc_DiagnosticFrameDec = 0) and a decimated pixel frame of 20 (1 pixel frame every 20 frames, dsc_DiagnosticFrameDec = 19).

[image: image19]
Figure 10 – diagnostic data records on BCU SDRAM memory

7.5.3 Real time diagnostic storage register initialization

Before to enable the real time diagnostic storage and eventually the master-BCU mechanism some register of both BCU Nios firmware and DSP-16do Nios firmware should be initialized to save the data properly. The registers placed in SRMA memory to initialize are the following:

	Variable name
	Address (dword)
	Type
	Description

	diagnostic_record_ptr
	0x000181F5
	uint32
	Pointer to the DSP memory where to read the diagnostic record (refer to dsc_PixelAreaPtr in 7.5.1)

	diagnostic_record_len
	0x000181F8
	uint32
	Diagnostic record size in DWORD (refer to 7.5.1)

	rd_diagnostic_record_ptr
	0x000181F7
	uint32
	Read only: current pointer for internal use

	wr_diagnostic_record_ptr
	0x000181F8
	uint32
	Read only: current pointer to the SDRMA where the diagnostic data read from the DSP is stored

Table 47 – Diagnostic storage DSP-16do control registers

	Variable name
	Address (dword)
	Type
	Description

	diagnostic_record_ptr
	0x00038012
	uint32
	Pointer to the DSP memory where to read the diagnostic record (refer to sc_HeaderDiagPtr)

	diagnostic_record_len
	0x00038013
	uint32
	Diagnostic record size in DWORD (refer to 7.5.2)

	enable_master_diag
	0x00038014 (LSW)
	uint16
	Enable (1) or disable (0) the master-BCU mechanism

	decimation_factor
	0x00038014 (MSW)
	uint16
	Decimation factor of the frame sent by the BCU via master-BCU mechanism

	remote_mac_address
	0x00038015

0x00038016 (LSW)
	6 x uint8
	MAC address of the remote server where to send the packets (ARGOS supervisor)

	remote_ip_address
	0x00038016 (MSW)

0x00038017 (LSW)
	4 x uint8
	IP address of the remote server where to send the packets (ARGOS supervisor)

	remote_udp_port
	0x00038017 (MSW)
	uint16
	UDP port of the remote server where to send the packets (ARGOS supervisor)

	rd_diagnostic_record_ptr
	0x00038018
	uint32
	Read only: current pointer to the SDRMA where the master-BCU downloading has arrived

	wr_diagnostic_record_ptr
	0x00038019
	uint32
	Read only: current pointer to the SDRMA where the diagnostic data read from the DSP is stored

Table 48 – Diagnostic storage BCU control registers

Once the registers has been initialized, including the dsc_DiagnosticFrameDec and sc_DiagnosticFrameDec variables, is possible to enable the diagnostic storage setting to one the proper bit of dsc_ParamSelector register (see Table 5).

7.5.3.1 RT diagnostic decimation factor

Setting properly the dsc_DiagnosticFrameDec and sc_DiagnosticFrameDec DSP variable, one can enable a decimation mechanism to reduce the number of stored frames, based on the modulo of the frame counter. By default the decimation factor is 0 that means save all frames and Table 50 explains how the decimation mechanism works.

	Frame number
	Decimation Factor

	
	0
	1
	2
	3
	4
	5
	6
	7

	0
	yes
	yes
	yes
	yes
	yes
	yes
	yes
	yes

	1
	yes
	
	
	
	
	
	
	

	2
	yes
	yes
	
	
	
	
	
	

	3
	yes
	
	yes
	
	
	
	
	

	4
	yes
	yes
	
	yes
	
	
	
	

	5
	yes
	
	
	
	yes
	
	
	

	6
	yes
	yes
	yes
	
	
	yes
	
	

	7
	yes
	
	
	
	
	
	yes
	

	8
	yes
	yes
	
	yes
	
	
	
	yes

	9
	yes
	
	yes
	
	
	
	
	

	10
	yes
	yes
	
	
	yes
	
	
	

	11
	yes
	
	
	
	
	
	
	

	12
	yes
	yes
	yes
	yes
	
	yes
	
	

	13
	yes
	
	
	
	
	
	
	

	14
	yes
	yes
	
	
	
	
	yes
	

Table 49 – Decimeation factor vs Frame number
	Decimation Factor
	0
	all frames

	
	1
	1 frame yes and 1 no

	
	2
	1 frame yes and 2 no

	
	3
	1 frame yes and 3 no

	
	4
	1 frame yes and 4 no

	
	5
	1 frame yes and 5 no

	
	6
	1 frame yes and 6 no

	
	7
	1 frame yes and 7 no

Table 50 – Decimation factor list
7.5.3.2 Master-BCU mechanism

The master-BCU mechanism is an automatic mechanism that sends to an external machine (in our case the ARGOS supervisor) the diagnostic records directly from the BCU to the supervisor, without implementing a bidirectional communication protocol. In fact the standard communication Ethernet link is based on a strictly client/server architecture, where the client (ARGOS supervisor) has to send a request of data to the BCU (server) and it responses with the requested data (see also 7.5.8). This approach is valid for all the standard communication activities where there real time performances are not requested, while in case the system has to upload huge amounts of data this approach is not the best one and for this reason the master-BCU mechanism has been implemented. Whit this mechanism the supervisor has to initialize the IP and MAC addresses where the BCU has to send the data, enable the mechanism (see Table 48 for the register initialization) and as soon as a new record is available to the BCU-SDRAM memory the BCU send the frame to the remote machine. Excluding the standard ETH/IP/UDP header and footer, the maximum Ethernet packet size is 1470 (14 bytes of header + 1456 of payload) (see Table 65) then the entire record is divided in a certain number of sub frames. The Ethernet protocol adopted is a UDP-IP with an encapsulated custom packet called TDP. The packet has a header with the following structure:
// header of master-BCU data packets

struct tdphdr

{

uint16 dummy_word;
// dummy word for 32 bit alignment

uint32 tot_len;
// total length of the diagnostic record (in bytes)

uint32 saddr;
// start address of this sub-packet respect to the entire record (starting from 0)

uint32 id;
// LSW record id, MSW sub-record id

};

The supervisor has to open an UDP socket on the predefined port and to start a listening process that waits and captures all the arriving sub-packets and from them has to rebuild the data record.

This method is extremely efficient reducing the CPU and Ethernet link load and should be adopted for the diagnostic acquisition.

7.5.4 MPIfR frame acquisition and managing

The ARGOS BCU system is able to receive and manage the serial frames sent by the MPIfR system according to the protocol defined in [AD7]. The packet is received from the serial interface and forwarded to the shared memory area of the BCU-DSP memory sc_ExtRotTTSlopeVect. Once the entire packet is arrived (an additional <cr> character has been added to detect the end of packet) the serial interface notifies to the DSP that the new packet is arrived. First the DSP firmware checks the validity of the checksum and if it is valid, arranges the input data in the following way:

· puts frame number in sc_FCVector + 4

· puts x & y coordinates in sc_RotTTSlopeVect converting it in floating point single precision format (note that in the slope vector the initialization procedure reserves 4 dwords even if just two locations are needed, the other two dwords are not used (set to 0) but should be left for internal code optimization). Another point is that no operation is done on these slopes (neither gain nor offset correction) and they are just passed, after conversion to floating point, to the reconstructor as they are.
· puts the four APD counters in sc_APDCounters, leaving them in uint16 bit format but extended in four 32bit dwords.

The firmware has also a mechanism to avoid partial overwriting during the slope or diagnostic data transfer. During those phases, the arriving data is temporary left in the shared memory (sc_ExtRotTTSlopeVect) and only when the two critical phases are completed, the frame is processed.

7.5.5 FLAO and Na slopes acquisition and managing

Similar to the MPIfR interface, the ARGOS BCU system is able to receive and manage slope vectors arriving from the FLAO BCU or Na BCU, In that case the interface used is the high speed link which writes the slope vector in the proper shared memory. The configuration of the command should be done in the FLAO BCU or Na BCU which should write the vector to the sc_ExtFlaoNaSlopeVect area (pointed by the sc_ExtFlaoNaSlopeVectPtr pointer). The frame should have the standard format used to transfer data between the slope computers and the DM, as described in Table 51 where the only FLAO system is present (option 1 of Figure 1 of [AD1]) and Table 52 where both FLAO and Na BCU systems are present (option 2 of Figure 1 of [AD1]).

	DSP memory area
	32 bit dword (float + uint32)

	sc_ExtFlaoNaSlopeVect
	FLAO_Na slope#0

	sc_ExtFlaoNaSlopeVect + 1
	FLAO_Na slope#1

	……
	……

	sc_ExtFlaoNaSlopeVect + nFLAO_Na – 2
	FLAO_Na slope#(nFLAO_Na – 2)

	sc_ExtFlaoNaSlopeVect + nFLAO_Na – 1
	FLAO_Na slope#(nFLAO_Na – 1)

	sc_ExtFlaoNaStartRTR
	flao_FramesCounter

	sc_ExtFlaoNaStartRTR + 1
	flao_ParamSelector

	sc_ExtFlaoNaStartRTR + 2
	not used (0)

	sc_ExtFlaoNaStartRTR + 3
	1

Table 51 – FLAO solo slope vector data format
	DSP memory area
	32 bit dword (float + uint32)

	sc_ExtFlaoNaSlopeVect
	FLAO_Na slope#0

	sc_ExtFlaoNaSlopeVect + 1
	FLAO_Na slope#1

	……
	……

	sc_ExtFlaoNaSlopeVect + nFLAO_Na – 2
	FLAO_Na slope#(nFLAO_Na – 2)

	sc_ExtFlaoNaSlopeVect + nFLAO_Na – 1
	FLAO_Na slope#(nFLAO_Na – 1)

	sc_ExtFlaoNaStartRTR
	flao_FramesCounter

	sc_ExtFlaoNaStartRTR + 1
	na_ParamSelector

	sc_ExtFlaoNaStartRTR + 2
	na_FramesCounter

	sc_ExtFlaoNaStartRTR + 3
	1

Table 52 – FLAO + Na slope vector data format
When a new FLAO + Na slope frame is arrived, triggered by the sc_ExtFlaoNaStartRTR + 3 register set to 1, the DSP firmware, arranges the input data in the following way:

· puts flao_FramesCounter in sc_FCVector + 5 and na_FramesCounter in sc_FCVector + 6;

· copies the slope vector in sc_FlaoNaSlopeVect.

Also in this case the firmware has a mechanism to avoid partial overwriting during the slope or diagnostic data transfer. During those phases, the arriving data is temporary left in the shared memory (sc_ExtFlaoNaSlopeVect) and only when the two critical phases are completed, the frame is processed.

7.5.6 HVC control board

The aim of the HCV board is to control the three LGS tip-tilt piezoelectric mirrors. The commands are generated from the pnCCD slopes as described in 7.4.2. Each board is able to drive up to two tip-tilt mirrors so the ARGOS BCU mini-crate is provided by two HVC board one fully used and the other half used. The tip-tilt command vector computed by the BCU-DSP device has 8 elements as describe in Table 53 and it is transferred to both HVC boards in the HVC-DSP shared memory hvc_TTCommandVector using a FastLink commands (see 7.5.7).

	DSP memory area
	32 bit dword (float + uint32)

	hvc_TTCommandVector
	x command – LGS #0

	hvc_TTCommandVector + 1
	y command – LGS #0

	hvc_TTCommandVector + 2
	x command – LGS #1

	hvc_TTCommandVector + 3
	y command – LGS #1

	hvc_TTCommandVector + 4
	x command – LGS #2

	hvc_TTCommandVector + 5
	y command – LGS #2

	hvc_TTCommandVector + 6
	not used (0)

	hvc_TTCommandVector + 7
	trigger dword (1)

Table 53 – LGS tip-tilt command vector
As soon as a new vector is arrived to the HVC-DSP device (triggered by the last element of the vector), the main routine of the HVC firmware selects for each tip-tilt mirror the corresponding commands. To do this a selection matrix with 2x8 elements should be properly initialized (variables hvc_SelectionMatrixTT0 and hvc_SelectionMatrixTT1) as shown in Table 54 (same for TT1 mirror) which will be multiplied by the hvc_TTCommandVector to extract the tip and tilt command for each mirror.

	DSP memory area
	32 bit dword (float)

	hvc_SelectionMatrixTT0
	tip command extraction

	hvc_SelectionMatrixTT0 + 1
	

	hvc_SelectionMatrixTT0 + 2
	

	hvc_SelectionMatrixTT0 + 3
	

	hvc_SelectionMatrixTT0 + 4
	

	hvc_SelectionMatrixTT0 + 5
	

	hvc_SelectionMatrixTT0 + 6
	

	hvc_SelectionMatrixTT0 + 7
	

	hvc_SelectionMatrixTT0 + 8
	tilt command extraction

	hvc_SelectionMatrixTT0 + 9
	

	hvc_SelectionMatrixTT0 + 10
	

	hvc_SelectionMatrixTT0 + 11
	

	hvc_SelectionMatrixTT0 + 12
	

	hvc_SelectionMatrixTT0 + 13
	

	hvc_SelectionMatrixTT0 + 14
	

	hvc_SelectionMatrixTT0 + 15
	

Table 54 – TT0 selection matrix data format
After that the command can be corrected by an offset for each axis (variables hvc_CommandOffsetTT0) as described in Table 55 (same for TT1 mirror). For example the offset can be used to set the zero position of the mirror according to the optical alignment.

	DSP memory area
	32 bit dword (float)

	hvc_CommandOffsetTT0
	tip command offset

	hvc_CommandOffsetTT0 + 1
	tilt command offset

Table 55 – TT0 command offset vector
Then, using a 2x2 rotation and gain matrix, the angular commands should be rotated and scaled (in radian) in the two x and y angular mirror commands. The matrix is saved in the hvc_RotationMatrixTT0 and hvc_RotationMatrixTT1 variables (see Table 56 for the matrix data format, same for TT1 mirror).

	DSP memory area
	32 bit dword (float)

	hvc_RotationMatrixTT0
	mirror x angle – coefficient of element tip

	hvc_RotationMatrixTT0+ 1
	mirror x angle – coefficient of element tilt

	hvc_RotationMatrixTT0+ 2
	mirror y angle – coefficient of element tip

	hvc_RotationMatrixTT0+ 3
	mirror y angle – coefficient of element tilt

Table 56 – TT0 rotation matrix data format
Finally the angular mirror commands are checked respect with the minimum and maximum range (set in hvc_MinCommandTT0, hvc_MaxCommandTT0, hvc_MinCommandTT1 and hvc_MaxCommandTT1) and eventually clipped to those values before to be passed to the actuator local control loop.

The last computational step is the feed forward voltage computation using the hvc_FFGainTT0 and hvc_FFGainTT1 (see Table 57 for the matrix data format, same for TT1 mirror). As described in 7.5.6.1, the aim of this contribution is fundamental to increase the dynamic performances of the local control loop and it is computed as a proportional gain of the actuator commanded position.

	DSP memory area
	32 bit dword (float)

	hvc_FFGainTT0
	FF gain for actuator channel #0

	hvc_FFGainTT0 + 1
	FF gain for actuator channel #1

Table 57 – TT0 feedforward gain vector
Before to pass the new angular commands to the actuator control loop a consideration should be done regarding the tip-tilt mirror (PI- S-334.1SL) adopted for the ARGOS. In fact this device should be used moving only two channels and a third channel is driven at constant voltage (typically set at mid output range). In the ARGOS system the setting of the third static channel voltage is obtained using the hvc_TT0_bias_current and hvc_TT1_bias_current variables with the proper voltage to DAC bit conversion parameter that will be calibrated on each specific tip tilt mirror.

The new angular commands are passed to the local control loop copying the angular commands in the variable labeled as pos_command in Figure 11 (the name in the HVC firmware is hvc_command_vector, see [RD1] - sheet HVCMainProgram) and the two feed forward voltages to the variable labeled as ff_ud_current in Figure 11 (the name in the HVC firmware is hvc_current_vector, see [RD1] - sheet HVCMainProgram), and then processed by the local control loop using a dedicated trigger word (see 7.5.6.1).

7.5.6.1 HVC Local actuator servo control loop

The local actuator servo control loop is an interrupt service routine @ ~70 KHz and its scope is to control the actuators of the tip-tilt mirrors in position.

The routine implements a digital filter with 3 taps IIR filter on the position error and 3 taps IIR filter on the absolute position. This is typically used to implement a derivative control acting as ‘electronic damper’. The filter is completely independent for each mirror actuator.

The output is converted to voltage and sent to the HV driver and then to the corresponding tip-tilt mirror actuator.

The feedback actuator position is acquired by the strain gauge available on the tip-tilt mirror.

In parallel with the position close loop a command proportional open loop contribution is included in the algorithm, this contribution is important to obtain the maximum performances at the step response where the close loop is relatively slow while this output proportional contribution allows at the actuator to reach the final position as fast as possible.

Input and output gains and offsets on each actuator allow considering strain gauge and actuator calibration, so that the control filter has unity gain.

[image: image20]
Figure 11 – Actuator local control loop flow chart

The local control loop includes also a mechanism for an accumulation and averaging computation of the commanded actuator voltages and position actuator strain gauges, the mechanism starts at every command update and includes a tunable delay waiting the settling position (i.e. voltage) of the actuator and then a tunable number of accumulated samples. Completed the accumulation, the average is computed and the results are stored to the hvc_AveragedArea to be read by the BCU-DSP device for diagnostic purposes, as described in Table 58.

	DSP memory area
	32 bit dword (float)

	hvc_AveragedData
	channel #0 voltage of TT0

	hvc_AveragedData + 1
	channel #1 voltage of TT0

	hvc_AveragedData + 2
	channel #2 voltage of TT0

	hvc_AveragedData + 3
	not used (0)

	hvc_AveragedData + 4
	channel #0 voltage of TT1

	hvc_AveragedData + 5
	channel #1 voltage of TT1

	hvc_AveragedData + 6
	channel #2 voltage of TT1

	hvc_AveragedData + 7
	not used (0)

	hvc_AveragedData + 8
	channel #0 position of TT0

	hvc_AveragedData + 9
	channel #1 position of TT0

	hvc_AveragedData + 10
	channel #2 position of TT0

	hvc_AveragedData + 11
	not used (0)

	hvc_AveragedData + 12
	channel #0 position of TT1

	hvc_AveragedData + 13
	channel #1 position of TT1

	hvc_AveragedData + 14
	channel #2 position of TT1

	hvc_AveragedData + 15
	not used (0)

Table 58 – Averaged actuator voltage and position data vector
7.5.7 FastLink commands

As FastLink we call all the commands that transfer data from one DSP memory area to another one using the high speed link (at ~4Gbit/s). The use of this kind of commands is related with the real time computation and they should be used with particular attention.

A generic FastLink command uses four register for the initialization as described in Table 59.

	Nbits
	Bits
	of word
	Description

	8
	0-7
	0
	Reserved char (start of command)

	3
	8-10
	0
	Command code:
000 write_same

010 read_sequential

	1
	11
	0
	Generate IRQ on sender DSP devices

	4
	12-15
	0
	Reserved

	16
	16-31
	0
	Data length (number of 32 bit words, 0 to 2047)

	12
	0-11
	1
	First DSP (higher 4 bits: crate address; lower 8 bits: DSP address within the crate)

	12
	12-23
	1
	Last DSP (higher 4 bits: crate address; lower 8 bits: DSP address within the crate)

	8
	24-31
	1
	Command ID

	32
	0-31
	2
	Destination DSP start address (in 32 bit addressing mode)

	15
	0-14
	3
	Source DSP start address (qword based) without the bank number

	2
	15-16
	3
	Source DSP bank number

	15
	17-31
	3
	Total data length (in qwords). For the write same command it is equal to data length / 2, for the read sequential command it is equal to data length * number of DSPs involved / 2

Table 59 – FastLink command registers
In the ARGOS BCU mini-crate all the FastLink commands are generated by the BCU-DSP device. All the FastLink command registers used for ARGOS system implementation should be initialized in the sc_FastlinkCmd memory area. The following Table 60, Table 61, Table 62, Table 63, Table 64 describe the five FastLink commands used in the ARGOS system.
	Read sequential from both DSP-16do DSP devices of dsc_SlopeCompleted variable into sc_ReplyVector area

	Memory location
	Dword - Bits
	Value
	Description

	sc_FastlinkCmd
	#0:
00 – 07
	00
h
	For internal use

	
	
08 – 10
	010
b
	Read sequential command

	
	
11
	1
b
	Generate IRQ on target DSPs

	
	
12 – 15
	0
h
	Reserved bits

	
	
16 – 31
	0002
h
	Data length in dword

	sc_FastlinkCmd + 1
	#1:
00 – 08
	00
h
	First DSP of the chain

	
	
09 – 11
	0
h
	First crate of the chain

	
	
12 – 19
	01
h
	Last DSP of the chain

	
	
20 – 23
	0
h
	Last crate of the chain

	
	
24 - 31
	0
h
	Command ID

	sc_FastlinkCmd + 2
	#2:
00 - 31
	dsc_SlopeCompleted

	sc_FastlinkCmd + 3
	#3:
00 – 14
	(sc_ReplyVector&0x0000FFFF)/2

	
	
15 – 16
	(sc_ReplyVector&0x00180000)>>19

	
	
17 – 31
	0004
h
	Total data length

Table 60 – FastLink command #0
	Read sequential from both DSP-16do DSP devices of dsc_SlopeOutput vector into sc_ReplyVector area

	Memory location
	Dword - Bits
	Value
	Description

	sc_FastlinkCmd
	#0:
00 – 07
	00
h
	For internal use

	
	
08 – 10
	010
b
	Read sequential command

	
	
11
	1
b
	Generate IRQ on target DSPs

	
	
12 – 15
	0
h
	Reserved bits

	
	
16 – 31
	022C
h
	Data length in dword

	sc_FastlinkCmd + 1
	#1:
00 – 08
	00
h
	First DSP of the chain

	
	
09 – 11
	0
h
	First crate of the chain

	
	
12 – 19
	01
h
	Last DSP of the chain

	
	
20 – 23
	0
h
	Last crate of the chain

	
	
24 - 31
	1
h
	Command ID

	sc_FastlinkCmd + 2
	#2:
00 - 31
	dsc_SlopeOutputHeder

	sc_FastlinkCmd + 3
	#3:
00 – 14
	(sc_ReplyVector&0x0000FFFF)/2

	
	
15 – 16
	(sc_ReplyVector&0x00180000)>>19

	
	
17 – 31
	0458
h
	Total data length

Table 61 – FastLink command #1
	Write same to both HVC-DSP devices of sc_TTSlopeVector into hvc_MirrorCommands area

	Memory location
	Dword - Bits
	Value
	Description

	0x00001080
	#0:
00 – 07
	00
h
	For internal use

	
	
08 – 10
	000
b
	Write same command

	
	
11
	1
b
	Generate IRQ on target DSPs

	
	
12 – 15
	0
h
	Reserved bits

	
	
16 – 31
	8

	0x00001081
	#1:
00 – 08
	02
h
	First DSP of the chain

	
	
09 – 11
	0
h
	First crate of the chain

	
	
12 – 19
	05
h
	Last DSP of the chain

	
	
20 – 23
	0
h
	Last crate of the chain

	
	
24 - 31
	2
h
	Command ID

	0x00001082
	#2:
00 - 31
	hvc_MirrorCommands

	0x00001083
	#3:
00 – 14
	(sc_TTSlopeVector&0x0000FFFF)/2

	
	
15 – 16
	(sc_TTSlopeVector&0x00180000)>>19

	
	
17 – 31
	8

Table 62 – FastLink command #2
	Read sequential from both HVC-DSP devices of hvc_AvergedData vector into sc_ReplyVector area

	Memory location
	Dword - Bits
	Value
	Description

	0x00001084
	#0:
00 – 07
	00
h
	For internal use

	
	
08 – 10
	010
b
	Read sequential command

	
	
11
	1
b
	Generate IRQ on target DSPs

	
	
12 – 15
	0
h
	Reserved bits

	
	
16 – 31
	0010
h
	Data length in dword

	0x00001085
	#1:
00 – 08
	02
h
	First DSP of the chain

	
	
09 – 11
	0
h
	First crate of the chain

	
	
12 – 19
	05
h
	Last DSP of the chain

	
	
20 – 23
	0
h
	Last crate of the chain

	
	
24 - 31
	3
h
	Command ID

	0x00001086
	#2:
00 - 31
	hvc_AvergedData

	0x00001087
	#3:
00 – 14
	(sc_ReplyVector&0x0000FFFF)/2

	
	
15 – 16
	(sc_ReplyVector&0x00180000)>>19

	
	
17 – 31
	0020
h
	Total data length

Table 63 – FastLink command #3
	Write same to SwtichBCU of DM of sc_SlopeVector + sc_StartRTR into

swb_SCSlopeVector + swb_SCStartRTR area

	Memory location
	Dword - Bits
	Value
	Description

	0x00001080
	#0:
00 – 07
	00
h
	For internal use

	
	
08 – 10
	000
b
	Write same command

	
	
11
	1
b
	Generate IRQ on target DSPs

	
	
12 – 15
	0
h
	Reserved bits

	
	
16 – 31
	1604

	0x00001081
	#1:
00 – 08
	FF
h
	First DSP of the chain

	
	
09 – 11
	0
h
	First crate of the chain

	
	
12 – 19
	FF
h
	Last DSP of the chain

	
	
20 – 23
	0
h
	Last crate of the chain

	
	
24 - 31
	4
h
	Command ID

	0x00001082
	#2:
00 - 31
	swb_SCSlopeVector

	0x00001083
	#3:
00 – 14
	(sc_SlopeVector&0x0000FFFF)/2

	
	
15 – 16
	(sc_SlopeVector&0x00180000)>>19

	
	
17 – 31
	1604

Table 64 – FastLink command #4
7.5.8 Interface between ARGOS BCU mini-crate and the ARGOS supervisor

The interface between the dedicated electronic for the ARGOS system (i.e. ARGOS BCU mini-crate) and the ARGOS supervisor is based on the Microgate diagnostic communication protocol. This is a dedicated UDP/IP protocol, named MGP (Microgate Protocol).

The structure of the MGP Ethernet packet is presented in Table 65.

	Standard
	Name
	Size

(bit)
	Fixed value
	Description

	Ethernet
	Destination address
	48
	0x------------
	Destination MAC address

	Ethernet
	Source address
	48
	0x------------
	Source MAC address

	Ethernet
	Type
	16
	0x0800
	Ethernet protocol used:

0x0800 for IP protocol

	Ethernet
	Data…
	
	
	

	
	IP
	Version
	4
	0x4
	0x45
	IP protocol version:

the system uses IPv4

	
	IP
	IHL
	4
	0x5
	
	IP Header length in dwords

	
	IP
	Type of service
	8
	0x00
	don’t care

	
	IP
	Total length
	16
	0x----
	total length of IP&UDP packets in bytes

	
	IP
	Identification
	16
	0x----
	the BCU board sets always to 0x0000

	
	IP
	Flags
	3
	0x0000
	bit 0: 0 = must be zero

bit 1: 1 = don’t fragment

bit 2: 0 = last fragment

	
	IP
	Fragment offset
	13
	
	0 = first & last fragment

	
	IP
	Time to live
	8
	0x80
	typical value

	
	IP
	Protocol
	8
	0x11
	IP protocol used:

0x11 for the UDP protocol

	
	IP
	Header checksum
	16
	0x----
	

	
	IP
	Source address
	32
	0x--------
	Source IP address

	
	IP
	Destination address
	32
	0x--------
	Destination IP address

	
	IP
	Data…
	
	
	

	
	
	UDP
	Source port
	16
	0x2710
	TCP/UDP port used:

0x2710 for Microgate UDP

	
	
	UDP
	Destination port
	16
	0x2710
	TCP/UDP port used:

0x2710 for Microgate UDP

	
	
	UDP
	Length
	16
	
	UDP packet length in bytes

	
	
	UDP
	Checksum
	16
	0x----
	

	
	
	UDP
	Data…
	
	
	See the following description

	
	
	
	MGP
	dummy word
	16
	0x0000
	

	
	
	
	MGP
	header dword #0
	32
	0x--------
	

	
	
	
	MGP
	header dword #1
	32
	0x--------
	

	
	
	
	MGP
	header dword #2
	32
	0x--------
	

	
	
	
	MGP
	Data…
	
	
	

	Ethernet
	CRC
	32
	
	

Table 65 – Ethernet packet structure

A header and a data payload, depending on the particular command, compose the “data” field of the UDP/MGP protocol.

The command reply is obtained by an asynchronous Ethernet command sent by the BCU board to the host that has issued the command. A counter that is copied on the command reply to associate the command sent with the reply received identifies each command.

Table 66 describes a generic UDP/MGP packet:

	
	Name
	Size (bit)
	Description

	dummy word
	
	16
	Necessary to align the rest of MGP data to 32 bit

	header

dword #0
	first crate
	4
	don’t care

	
	first DSP
	8
	first DSP of the crate where the command should be actuated

	
	last crate
	4
	don’t care

	
	last DSP
	8
	last DSP of the crate where the command should be actuated

	
	command
	8
	see command table

	header

dword #1
	length
	16
	packet length in dword

	
	flags
	8
	command flags:

bit 0 =
want reply (to enable the reply packet from communication board to host);

bit 1 =
as a quad word (to enable burst write transaction writing to DSP).

	
	command identifier
	8
	a 8 bit identifier of the packet. The same value is used on reply packet to match the sent command to the reply

	header

dword #2
	start address
	32
	start address where data are written or read from

	Data…
	…
	
	if necessary

Table 66 – MGP UDP/IP packet structure

The diagnostic protocol is based on very simple primitives that allow accessing in read and writing all the different memory-mapped devices on BCU, DSP-16do and HVC boards. The access to these devices is memory mapped as well. Instead of implementing commands, specific memory locations are used as mailboxes to indicate the action to be performed. Parameters can be directly changed by accessing the relevant memory areas.

This method is very flexible and efficient; in fact there is no need, on the ARGOS BCU side, to implement a command parser in strict sense.

This approach has also some drawback, the most evident one being the fact that all high level SW procedures implementing MGP commands need to know the memory mapping of the current firmware running on the target boards. To simplify this potential problem, the spread sheet excel file [RD1] is provided as integral part of the system configuration.

The basic commands available on the MGP protocol are:

· memory write: writes a buffer starting from a specified address to all the specified devices (broadcast);
· memory read: reads a portion of memory starting from a specified address from all specified devices and collect all together.
Beyond these commands there are the following specific commands:

· flash lock: lock a portion of the flash memory to avoid undesired overwriting;

· flash unlock: unlock a portion of the flash memory to allow the overwriting;

· memory clear: clears a portion of the device from a specified address;

· device reset: it is a dedicated command to generate the reset of the specified devices, see 7.5.8.1.

The following table summarizes the memory-mapped devices available on the boards and the corresponding commands. The memory address always starts from zero on each different device.

	Board
	Device
	Command

	
	
	reset
	write
	read
	clear
	lock
	unlock

	BCU
	Flash
	x
	x
	x
	x
	x
	x

	
	Sdram
	
	x
	x
	x
	
	

	
	Sram
	
	x
	x
	x
	
	

	
	DSP
	x
	x
	x
	
	
	

	DSP-16do
	Flash
	x
	x
	x
	x
	x
	x

	
	Sdram
	
	x
	x
	x
	
	

	
	Sram
	
	x
	x
	x
	
	

	
	DSP
	x
	x
	x
	
	
	

	HVC
	Flash
	x
	x
	x
	x
	x
	x

	
	Sdram
	
	x
	x
	x
	
	

	
	Sram
	
	x
	x
	x
	
	

	
	DSP
	x
	x
	x
	
	
	

Table 67 – Devices accessible by the diagnostic communication commands

Table 68 reports a complete list of the MGP commands available:

	Command name
	Value
	Description

	MGP_OP_WRSAME_DSP
	0
	Writes the same buffer to the DSPs

	MGP_OP_WRSEQ_DSP
	1
	Writes different buffers to the DSPs

	MGP_OP_RDSEQ_DSP
	2
	Reads a portion of memory from the DSPs

	RESERVED CMD
	4
	This command is not used in the ARGOS system

	RESERVED CMD
	5
	This command is not used in the ARGOS system

	RESERVED CMD
	6
	This command is not used in the ARGOS system

	MGP_OP_RESET_DEVICES
	10
	Resets independently all the devices on the DSM crate

	RESERVED CMD
	11
	This command is not used in the ARGOS system

	MGP_OP_LOCK_FLASH
	128
	Locks a portion of the flash

	MGP_OP_UNLOCK_FLASH
	129
	Unlocks a portion of the flash

	MGP_OP_CLEAR_FLASH
	130
	Clears a portion of the flash

	MGP_OP_WRITE_FLASH
	131
	Writes the same buffer to the flash

	MGP_OP_RDSEQ_FLASH
	132
	Reads a portion of memory from the flash

	RESERVED CMD
	135
	This command is not used in the ARGOS system

	RESERVED CMD
	136
	This command is not used in the ARGOS system

	RESERVED CMD
	137
	This command is not used in the ARGOS system

	MGP_OP_CLEAR_SDRAM
	140
	Clears a portion of the SDRAM

	MGP_OP_WRSAME_SDRAM
	141
	Writes the same buffer to the SDRAM

	MGP_OP_WRSEQ_SDRAM
	142
	Writes different buffers to the SDRAM

	MGP_OP_RDSEQ_SDRAM
	143
	Reads a portion of memory from the SDRAM

	MGP_OP_CLEAR_SRAM
	145
	Clears a portion of the SRAM

	MGP_OP_WRSAME_SRAM
	146
	Writes the same buffer to the SRAM

	MGP_OP_WRSEQ_SRAM
	147
	Writes different buffers to the SRAM

	MGP_OP_RDSEQ_SRAM
	148
	Reads a portion of memory from the SRAM

	RESERVED CMD
	150
	This command is not used in the ARGOS system

	RESERVED CMD
	151
	This command is not used in the ARGOS system

	RESERVED CMD
	152
	This command is not used in the ARGOS system

	RESERVED CMD
	155
	This command is not used in the ARGOS system

	RESERVED CMD
	156
	This command is not used in the ARGOS system

	MGP_OP_CMD_SUCCESS
	200
	Used on the reply packet if the command has been processed with success

	MGP_OP_CMD_FAULT
	201
	Used on the reply packet if a fault condition happened, Typically when the input parameters of the command was wronged

	MGP_OP_CMD_TIMEOUT
	202
	Used on the reply packet if an internal code execution timeout has happened

	MGP_OP_CMD_WARNING
	203
	This command is not used in the ARGOS system

	MGP_OP_CMD_DIAGNOSTIC
	204
	Used on the reply of a diagnostic packet

	RESERVED CMD
	240
	This command is not used in the ARGOS system

	RESERVED CMD
	241
	This command is not used in the ARGOS system

	RESERVED CMD
	242
	This command is not used in the ARGOS system

	RESERVED CMD
	243
	This command is not used in the ARGOS system

	MGP_OP_CMD_NULL
	255
	Null command

Table 68 - MGP commands list

There are also some generic flags used to give some additional information on the command:

	Command name
	Bit
	Description

	MGP_FL_WANTREPLY
	1
	Enable the creation of a reply command to the ARSOG supervisor. To be set also when a read command is sent.

	MGP_FL_ASQUADWORD
	2
	Used in the write to DSP memory commands. It enables a special write mode without break during the data transfer

	RESERVED FLAG
	3
	This flag is not used in the ARGOS system

	RESERVED FLAG
	4
	This flag is not used in the ARGOS system

	RESERVED FLAG
	5
	This flag is not used in the ARGOS system

Table 69 - MGP flags list

Hereafter we report an example of a MGP command:

	MGP_OP_WRSAME_DSP
	this command allows to write the same buffer to all the DSPs as defined into the header

	
	Name
	Size (bit)
	Value

	header

dword #0
	first crate
	4
	0x00

	
	first DSP
	8
	0x00 - 0xFF

	
	last crate
	4
	0x00

	
	last DSP
	8
	0x00 - 0xFF

	
	command
	8
	MGP_OP_WRSAME_DSP

	header

dword #1
	length
	16
	0x0000 - 0x0FC0

	
	flags
	8
	allowed command flags:

MGP_FL_WANTREPLY

MGP_FL_ASQUADWORD

	
	command identifier
	8
	random value between 0x00 to 0xFF

	header

dword #2
	start address
	32
	start address where to write the data

	Data…
	
	length
	data buffer

	Reply command if requested

	
	Name
	Size (bit)
	Value

	header

dword #0
	first crate
	4
	0x00

	
	first DSP
	8
	0x00

	
	last crate
	4
	0x00

	
	last DSP
	8
	0x00

	
	reply_command
	8
	possible commands reply:

MGP_OP_CMD_SUCCESS

MGP_OP_CMD_FAULT

MGP_OP_CMD_TIMEOUT

	header

dword #1
	reply_length
	16
	0x0000

	
	flags
	8
	0x00

	
	command identifier
	8
	same command identifier of the master command

	header

dword #2
	start address
	32
	0x00000000

	Data…
	
	0
	not used

Table 70 - MGP_OP_WRSAME_DSP command

7.5.8.1 Ethernet “reset” command

The “reset” command (where “reset” is not the most suitable name, given the various functions linked to this command) is a dedicated Ethernet command used to act directly to some board devices respect with the standard Ethernet command that are typically based accessing in read and write all the different memory-mapped devices.

The Table 71 describes the command protocol and the Table 72 lists all the available “reset” commands respect with the board. For each command there is also the link to the use of the bit.

	MGP_OP_ RESET_DEVICES
	this command resets all the devices specified on the command header

	
	Name
	Size (bit)
	Value

	header

dword #0
	first crate
	4
	0x00

	
	first DSP
	8
	0x00 - 0xFF

	
	last crate
	4
	0x00

	
	last DSP
	8
	0x00 - 0xFF

	
	Command
	8
	MGP_OP_RESET_DEVICES

	header

dword #1
	Length
	16
	0x0001

	
	Flags
	8
	0x00

	
	command identifier
	8
	random value between 0x00 to 0xFF

	header

dword #2
	start address
	32
	0x00000000

	Data…
	
	2*32
	see the following table for the type of reset available

	Reply command if requested

	
	Name
	Size (bit)
	Value

	header

dword #0
	first crate
	4
	0x00

	
	first DSP
	8
	0x00

	
	last crate
	4
	0x00

	
	last DSP
	8
	0x00

	
	Command
	8
	MGP_OP_CMD_SUCCESS or

MGP_OP_CMD_FAULT

	header

dword #1
	Length
	16
	0x0000

	
	Flags
	8
	0x00

	
	command identifier
	8
	same command identifier of the master command

	header

dword #2
	start address
	32
	0x00000000

	Data…
	
	0
	not used

Table 71 – MGP_OP_RESET_DEVICES command

	bit
	BCU board
	HVC board
	DSP board

	First DWORD

	0
	reset all crate (conf A)
	not used
	not used

	1
	
	not used
	not used

	2
	reset all boards excluded the communication board (conf A)
	not used
	not used

	3
	
	not used
	not used

	4
	not used
	reset board
	reset board

	5
	not used
	
	

	6
	reset FPGA (conf A)
	reset FPGA
	reset FPGA

	7
	
	
	

	8
	reset FLASH (conf A)
	reset FLASH
	reset FLASH

	9
	
	
	

	10
	reset DSP (conf A)
	reset DSP #0
	reset DSP #0

	11
	
	
	

	12
	not used
	not used
	reset DSP #1

	13
	not used
	not used
	

	14
	reset Ethernet chip (conf A)
	not used
	not used

	15
	
	not used
	not used

	16
	analog supply control (conf B)
	not used
	not used

	17
	
	not used
	not used

	18
	coil power supply control (conf B)
	not used
	not used

	19
	
	not used
	not used

	20
	Ethernet watchdog control (conf C)
	not used
	DSP watchdog control (conf B)

	21
	
	not used
	

	22
	reserved for internal use
	not used
	not used

	23
	reserved for internal use
	not used
	not used

	24
	reset of timestamp global register
	not used
	not used

	25
	on boards led (conf B)
	on boards led (conf B)
	on boards led (conf B)

	26
	
	
	

	27
	input FastLink port enabling/disabling (conf E)
	not used
	not used

	28
	not used
	not used
	not used

	29
	not used
	not used
	not used

	30
	not used
	not used
	not used

	31
	not used
	not used
	not used

	Second DWORD

	0
	current threshold volatile registers update (conf D)
	not used
	coil driver #0 control (conf B)

	1
	
	not used
	

	2
	
	not used
	coil driver #1 control (conf B)

	3
	set the power backplane serial number (conf E)
	not used
	

	4
	set the frequency of the signal reference signal (conf E)
	not used
	coil driver #2 control (conf B)

	5
	current threshold non-volatile registers update (conf D)
	not used
	

	6
	
	not used
	coil driver #3 control (conf B)

	7
	
	not used
	

	8
	not used
	not used
	coil driver #4 control (conf B)

	9
	not used
	not used
	

	10
	not used
	not used
	coil driver #5 control (conf B)

	11
	not used
	not used
	

	12
	not used
	not used
	coil driver #6 control (conf B)

	13
	not used
	not used
	

	14
	not used
	not used
	coil driver #7 control (conf B)

	15
	not used
	not used
	

	16
	Argument of command
	not used
	not used

	17
	
	not used
	not used

	18
	
	not used
	not used

	19
	
	not used
	not used

	20
	
	not used
	not used

	21
	
	not used
	not used

	22
	
	not used
	not used

	23
	
	not used
	not used

	24
	
	not used
	not used

	25
	
	not used
	not used

	26
	
	not used
	not used

	27
	
	not used
	not used

	28
	
	not used
	not used

	29
	
	not used
	not used

	30
	
	not used
	not used

	31
	
	not used
	not used

Table 72 – Argument of MGP_OP_RESET_DEVICES command

	Bit configuration A
	Operations available

	00
	do nothing

	01
	de-assert the signal reset

	10
	generate a sequence of reset if the device was operating

	11
	assert the signal reset

	Bit configuration B
	Operations available

	00
	do nothing

	01
	disable

	10
	enable

	11
	do nothing

	Bit configuration C
	Operations available

	00
	do nothing

	01
	disable

	10
	enable

	11
	refresh watchdog

	Bit configuration D
	Operations available

	000
	do nothing

	001
	set the value on channel 1

	010
	set the value on channel 2

	011
	set the value on channel 3

	100
	set the value on channel 4

	111 - 101
	do nothing

	bits 16 - 31
	data argument of the command

	Bit configuration E
	Operations available

	0
	do nothing

	1
	set the value defined in the data argument word (bits 16 – 31)

	bits 16 - 31
	data argument of the command

Table 73 – List and description of the available bit configurations

7.5.8.2 Ethernet command to enable/disable input FastLink interfaces

A dedicated command has been introduced to enable/disable the input FastLink interfaces: pnCCD and FLAO /Na BCU. At startup and after a system reset both input ports are disabled so any input frame is discarded. The enable/disable command is based on the MGP_OP_RESET_DEVICES command setting to one the bit #27 and writing the proper value to the data word according to the Table 74 (see also Table 72).

	bit
	First DWORD
	Second DWORD - Command Data Word (MSW)

	27
	bit to enable/disable FastLink ports

	· 0 - disable all ports

· 1 - enable pnCCD port

· 2 - enable FLAO / Na BCU port

Table 74 – FastLink input port selection
8 Simulating pnCCD frames sequence

As requested in [AD1] a debugging mechanism to check the slope computation and data flux in the BCU ARGOS system has been implemented. The basic idea is to write directly to the DSP devices memory of the DSP-16do board the pnCCD and, writing in the computational trigger registers, move forward the slope computation. In Table 75 there is the command sequence list. All the ‘dsc_’ variables should be written to both DSP devices of DSP-16do board.

	Command #
	DSP memory area
	Data value

	0
	dsc_NumLinesToDo
	write 0 to reset the number of lines to compute

	
	dsc_FrameCounter
	increment of 1 respect to the previous value starting from 0, this action reset the computational machine

	1
	dsc_PixelArea
	frame header doubled as indicated in Table 17 + pixels of first line of all CAMEX in the right order

	2
	dsc_NumLinesToDo
	write 1 (number of lines downloaded)

	After this register write command the first line (all CAMEX) is processed and the partial computation can be verified reading the DSP memory

	3
	dsc_PixelArea +

8 + 528/2 (uint16)
	pixels of second line of all CAMEX in the right order

	4
	dsc_NumLinesToDo
	2 (number of lines downloaded)

	After this register write command the second line (all CAMEX) is processed and the partial computation can be verified reading the DSP memory

	……

	repeat for all the 132 CAMEX lines

	……

	264
	dsc_PixelArea +

8 + 131 x 528/2 (uint16)
	pixels of second line of all CAMEX in the right order

	265
	dsc_NumLinesToDo
	132 (number of lines downloaded)

	This two writes complete the pixels download and automatically the DSP firmware completes the algorithm that can be check verifying is the sc_SlopeCompleted is set to 1. If enabled also the pixel frame is stored to the SDRAM memory.

	At this point is possible return to the command #0 and repeat the computation with a new frame but is also possible to proceed with the algorithm sequence…

	0
	sc_ResetLoop
	1 (trigger value to start the BCU –DSP activity)

	Now the entire slope algorithm is completed, including the mirrors update (if enabled) and the diagnostic storage and download to the ARGOS supervisor (if enabled). Returning to the command #0 is possible restart with a new frame.

Table 75 – Command sequence for pnCCD emulation procedure
9 Real-time computation timing analysis

This chapter reports the timing analysis of the real time computation.

The system is configured as follow:

· the pnCCD input frame has been simulated using the frame generator (see [AD2]) configured to generate a CCD of 264x264 pixels at 1kHz with:
· 0.528 µs to download one line

· 5.160 µs of line delay between each line

· then 5.688 µs per each line x 132 lines = 750.832 µs for the entire frame download (including header)
· at the end 249.168 µs of frame delay before to restart with a new frame
· total 1000.000 µs for one frame

The following oscilloscope screen shots show the frame download activity and the detail of the computation and data transfer activity.

In particular:

· the yellow trace triggers the entire DSP-16do activity: parallel download and computational phase + delayed computational phase after the last pixel has been downloaded. Note that the relatively long second phase is due to the fact the pixel download is configured in just ~750 µs and then the parallel computation is “on delay” respect to the download, in case of slower pixel download, the computation time stays constant at the presented value until the pixel download is slower than the computational time
· the red trace represents the high speed communication activity used to transfer the pixels from the pnCCD FPGA interface module to the DSP devices of DSP-16do board and the slope transfer + LGS tip tilt slopes between the DSP device of the BCU board and the DSP-16do and HVC boards respectively.

· the blue trace represents
· in Figure 12 the pixel storage to the DSP-16do SDRAM memory (diagnostic phase after the completion of the real-time critical phase) with a decimation counter of 3; note that currently the SDRAM bandwidth is too slow to guarantee the data transfer on time… should be fixed!!!

· in Figure 13 and Figure 14 the same trace is linked to an internal FPGA signal for the activity on the DSP device external bus
· the green phase represent the DSP device of the BCU board activity immediately after the slopes computation, including the diagnostic record storage to the local SDRAM memory.

[image: image21.png]Math

AS144ps O)= 3485768 mS
3473620ms_lin¥= 285341 Hr

Waitingfr Trigner

Figure 12 – Sequence of three pixel frames at 1kHz of frequency

[image: image22.png]mebase -6021s]

750878 s
X2= 88085 1= TT03IS KHE

Figure 13 – Detail of the last phase of slope computation once that the last pixel is arrived
[image: image23.png]Math

2089500 s
478583 kHz

Wting for Trigger

Figure 14 – Detail of the DSP device of the BCU board

10 Conclusion

The document provides the detailed design description of the ARGOS BCU system. Beyond the design aspects, it also provides a guideline for the proper initialization of the system with a detailed description of all involved parameters.
11 ANNEXES

11.1 Connector pin-out for MPIfR serial interface

[image: image24.jpg]vee vee vee vee vee
s rus2ia $ ruszie
ris21c < Rus21
m etk S neric
nerik S ner ik 8 26
e
o o Re4esRETE 1
vart) b serv © 1
i - pART TS 2
uvartd s serv. 1 VIO 230ris/4B5be 3
4 oemam i il P I + p2stitii s
uar)_pg_serv B : . Znassine s
e, prem 7
LD U IERE b o
BRIN 4 -
03 o
1 cte c2- (2
s
= ' N
1000 mazset
ct- ca -4 <
r 5z ¢
0l g 5 3 ‘g M alio o
i 5328 B
[1000F 29 | waciecar vee
vee
sz
T a0 N o
2
O 3
JUMPERSHD 3 GND)
v

ohD

Figure 15 – RS232/485 Serial connector pin-out

AO SUPERVISOR

MPIfR

pnCCD

BCU

BOARD

DSP-16do BOARD

NIOS

pnCCD interface

DSP

FLAO/NaBCU interface

DM switch BCU interface

BUS32 interface

BUS16 interface

2 x HVC BOARDs

FLAO or NaBCU BOARD

DM switch BCU BOARD

Ethernet

link

RS485

link

FC

link

FC

link

pnCCD

link

SOF

pixel download

slopes comp.

pixels storage

LGS TT update

slopes collecting

DM slope transf.

diag. storage

slopes transf.

TT cmd. update

pnCCD interface activity

DSP-16do DSP device activity

BCU DSP device activity

HVC DSP device activity

3 x TT mirrors driving

Secondary mirror driving

MPIfR TT slopes

FLAO+Na slopes

Asynchronous activity

bottom-left

pix #263

bottom-right

pix #69695

top-right

pix #69432

top-left

pix #0

sub-ap #110

sub-ap #114

sub-ap #152

sub-ap #151

sub-ap #115

sub-ap #256

sub-ap #237

sub-ap #109

sub-ap #242

sub-ap #51

sub-ap #25

sub-ap #5

sub-ap #4

sub-ap #0

sub-ap #139

sub-ap #99

sub-ap #95

sub-ap #138

sub-ap #100

sub-ap #4

sub-ap #51

sub-ap #0

sub-ap #25

sub-ap #5

sub-ap #270

sub-ap #257

sub-ap #94

sub-ap #252

pixel #63

pixel #56

pixel #8

pixel #7

pixel #0

#19

#0

#0

#1

#2

#20

#20

#21

#22

#39

#40

#40

#41

#42

…

slope data record

pixel frame record

SDRAM address 0

Control loop (unity gain)

saturation check using

sat_DAC_value�nsat_DAC_value

speed_�smoothed_loop_gain

Preshaper

err_�smoothed_loop_gain

DAC_

N2A_gain

DAC_A2

bit_gain

dist_A_coeff

dist_B_coeff

pos_command

bias_current

DAC_bit_offset

Preshaper

bias_current

cmd_current

preshaped_cmd

preshaped_curr

distance

control_enable

float_ADC_value

pos_current

float_DAC_value

DAC_value

+

+

-

+

+

+

+

+

+

+

+

DAC

ADC

Int2Float

ADC_value

ff_ud_current

driven by�upper level

BCU board activity

slope computation on DSP-16do board

pixel storage to the SDRAM – out of specifications!

slope diagnostic record storage to SDRAM

polling phase waiting for the completion of the slope computation

slope vector reorder and LGS tip-tilt computation

HVC tip-tilt command update

slope data transfer from DSP board to BCU board

	MICROGATE S.r.l.

Via Stradivari, 4

I 39100 BOLZANO

www.microgate.it

	MICROGATE S.r.l.

Via Stradivari, 4

I 39100 BOLZANO

www.microgate.it

_1362389318.unknown

_1362390396.unknown

_1362395612.unknown

_1362395639.unknown

_1362395078.unknown

_1362389349.unknown

_1362388877.unknown

_1362389315.unknown

