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ABSTRACT

The LBT-AdOpt Supervisor is a collection of software processes which control the operations on the set of devices
which make up the Adaptive Optics subsystem. The Arbitrator is the software component which coordinates
the operations of the Supervisor in order to support operations at the telescope in reply to requests issued by
the Instrument Control Software.

In this paper we describe the architecture of the Arbitrator, based on an extremely modular, extensible and
maintainable approach, designed using object-oriented techniques, that include intensive use of classes, exception
handling and design patterns, as well as a clear division of tasks.
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1. INTRODUCTION
1.1 The LBT-AdOpt system

The Adaptive Optics system for the LBT is a single conjugate AO system which, thanks to the use of a deformable
secondary mirror, is integral part of the telescope. Detailed descriptions of the LBT-AdOpt system and follow-ups
of its development have been presented many times' # and are updated in this same conference®© .
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Figure 1. LBT-AdOpt System Components and Communications
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The system is essentially subdivided into two largely independent subsystems: a pyramid based Wavefront
Sensor®? (WFS), and an Adaptive Secondary mirror” 1! (AdSec).

From the system point of view the two AO subsystems are an assembly of various hardware components (op-
tical, mechanical, electronics) part of which are off-the-shelf commercial devices and part are custom developed.

A detailed diagram of the hardware components of the system is shown in figure 1, together with the com-
munication paths between the components and the Supervisor Workstation.

The WEFS is hosted in a cylindrical cage at one of the elevation platform focal stations together with the
auto-guiding system (the combination of the two is named AGW); it’s task is to use the image from the CCD of
the wavefront sensor to evaluate the wavefront deformation and compute an array of deformation values (slopes)
to be sent to the secondary mirror for correction. The slopes computation is performed by a custom developed
electronics board hosting two DSP’s*. Slope values are sent to the secondary mirror through a fiber optics
channel by using a custom developed specialized protocol.

The deformable secondary mirror is equipped with custom developed electronics for the control of the magnetic
actuators which modify the mirror shape; moreover it provides enough computational power to implement the
wavefront reconstruction, i.e.: to convert slopes into commands for the deformable mirror!?13 .

Figure 2 shows a diagram of the data communication paths among AO subsystems and the existence of two
“software domains” within the system.

The adaptive loop real-time operations are controlled by firmware running on the DSP’s embedded into the
Wavefront Sensor electronics the Adaptive Secondary electronics. Here are implemented the algorithms for slope
computing and for reconstruction and also is managed the transmission of data along the dedicated fiber channel.
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Figure 2. LBT-AdOpt System Blocks

All the housekeeping and diagnostic operations are performed by the Supervisor: a collection of programs
running on a Linux workstation, which coordinate the operations of the hardware components of the system.
The Supervisor tasks includes operations such as: uploading firmware, starting and stopping specific devices,
control the sequence of operations, gather diagnostic data and analyze them to discover unsafe conditions, etc.

The Supervisor runs on a Linux based workstation and communicates with the hardware devices through the
Ethernet LAN.

*The BCU board developed for the LBT-AdOpt system is the basic building block also for the Secondary Mirror
electronics.




1.2 Supervisor architecture

The Supervisor’s architecture' is essentially based on the concept of many loosely coupled processes communi-
cating by means of a message based network protocol. It is essentially a collection of programs, referred to as
components in the following, each one dedicated to a specific and well defined task. E.g.: we have controllers
which operate single hardware devices, we have GUI's for specific controllers, and so on. Components which
are dedicated to the coordination of operation within subsystems have been called arbitrators and are the main
object of this paper.

The heart of the system is the Message Daemon (MsgD-RTDB) which provides message exchange functions,
operates as a central repository for variables to allow sharing of data and information between processes, and
provides a centralized logging facility.

All the Supervisor components are stand-alone processes which run independently and can cooperate with
other components by means of message based services provided by the MsgD-RTDB; each component may be
started or stopped while the system is running without affecting other processes. The MsgD-RTDB also provides
mechanisms to synchronize the operations among individual components, when synchronization is needed.

The components can access MsgD-RTDB services via an API provided by the “Treading Library” (thrdlib)
which, as suggested by its name, also includes facilities to simplify the programming of threaded applications
which can efficiently manage both synchronous and asynchronous message exchanges. As a further level of
abstraction, available to components coded by using the C++ language, we have developed the class AOApp
which encapsulates all the functionalities provided by the library and is the common building block for most of
the Supervisor components.

The strategy adopted in the development of the Supervisor software was based on a few key points:

e The capability to develop and test hardware/software components (E.g.: the CCD and its control program)
independently from each other.

e The capability to assemble components into subsystems and operate and test subsystems independently'.

e The capability to use in the final version of the software (i.e.: the version running at the telescope) exactly
the same components used (and thoroughly tested) in the lab.

e The capability to add or remove functionalities without affecting the rest of the system.

The high modularity of the Supervisor is proving to be very valuable during the system test phase when most
operations are performed interactively and when there is the need to cope efficiently and promptly to unexpected
issues.

On the other side we are aware that a robust and efficient coordination between single subsystems is needed
when the system will be integrated into the LBT. When observing with the support of the Adaptive Optics system
the observer expects that the system can be set up with a few easy commands and can react automatically to many
possible different situations, without the need to understand the complexity of underlying operating sequences.
Even during lab tests it is necessary to have procedures to perform sequences of measures in a repeatable way.

To this purpose we have developed the concept of Arbitrator: a process whose task is the coordination of
operations of various components in order to automate the execution of a complex sequence of operations. In
some other contexts a similar process has been called “sequencer”, but with the name Arbitrator we would like
to stress the fact that the successful completion of some operation is not the result of the execution of a simple
sequence of steps, but requires a number of intermediate decisions which depend on many external conditions.

'E.g.: both the WFS and the Adaptive Mirror have been separately assembled and tested in the lab>* and during
lab tests the related Supervisor components have been debugged and improved against the real hardware. Now the two
subsystems are being moved together to the optical bench where they must be integrated for the final test.



2. ARBITRATING LBT-ADOPT OPERATIONS

The control of AdOpt operations at the telescope is performed via commands originating from the Instrument
Software by means of the related software interface (IIF)'® to the Telescope Control System (TCS). AdOpt
related commands are managed by a TCS subsystem (the A0S) which is the bridge between the TCS and the
Supervisor; in this respect AOS is both a TCS Subsystem and a Supervisor component. The AOS main task is
to communicate the commands to the Supervisor or, more precisely, to the Arbitrator which is the Supervisor
component dealing with coordination among the various parts of the AO System.
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Figure 3. LBT-AdOpt Arbitrator hierarchy

Coordination of tasks within the Supervisor which is needed to orderly execute commands from the TCS
is performed by a few processes in a hierarchical structure as shown in figure 3. The three processes as a
whole are called the LBT-AdOpt Arbitrator. The two lower level processes (the WFS Arbitrator and the AdSec
Arbitrator) have responsibility on their own subset of components and will receive commands from the upper level
Main Arbitrator. The latter receives commands from the AOS, and converts them into the proper sequence of
commands to be issued to its subordinates. The latter will in turn communicate with the components controlling
the hardware to perform their own sub-task. Arrows in the figure indicate the main direction of commands, which
are executed in sequence and synchronously along each command path. As it will be detailed in a following
paragraph, a few messages flow in the opposite direction in order to support notification of asynchronous events.
As command paths in figure 3 clearly show, no communication is needed between the two lower arbitrators: they
can thus operate (and be tested) separately; when coordinated operation of the two subsystem is needed, this is
demanded to the Main Arbitrator.

3. THE LBT-ADOPT ARBITRATOR

As shown in the previous section, the LBT-AdOpt Arbitrator is a structure of three processes with very similar
functions: their task is to receive external commands, validate them, and execute the corresponding actions.
The natural model to be used for such a task is a Finite State Machine (FSM). Each independent arbitrator is
thus described and implemented as a FSM, with some added functionalities as we will show next.

As an example let’s have a look to the FSM of the Main Arbitrator shown in figure 4, where the state changes
correspond to the commands as defined for the LBT-AdOpt system and states to the various steps which must
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Figure 4. Main arbitrator FSM

be followed during an adaptive optics supported observation at the telescope?.

While the FSM is a powerful device to describe a desired sequence of operations, in the real world more
functionalities are needed:

Error management. As a result of errors a state transition could not be possible.

External events. Many devices under the control of the FSM may need to asynchronously notify events
(environmental changes, hardware failures, etc.).

Command cancellation. Command cancellation may be necessary upon request of the user or as a result
of some failure.

Command history. It may be needed if multiple level command undoing is to be implemented.

Of the above points, the management of errors and of external events are key issues upon which the robustness
of the entire system depends heavily. Error conditions may arise as the result of commands which cannot be

#The meaning of commands and states as shown in the figure should be clear enough from their names, but it is not
essential for the discussion. A detailed description can be found in the specific report*® .



successfully completed for any reason, e.g.: because they will lead to dangerous or otherwise unreachable status
of the system or some device®. In this cases error notification may be managed synchronously, i.e.: by returning
an error condition as reply to the command and the corresponding action should be the return to the status
before the command issued.

External events are related to conditions of some device in the system, independent on any command received,
but caused by device internal failures, changes in the environment and the like. As an example, the secondary
mirror is provided with a complex internal diagnostic system which continuously monitors a large number of
electrical, mechanical and environmental parameters in order to detect potentially dangerous conditions. Or
possibly the WFS could detect a decrease in total flux from the reference star (due to atmospheric condition
variation) which requires adjustments in parameters or even to interrupt the observation. External events may
thus have different levels of severity, but must anyway be notified to be properly managed.
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Figure 5. Complete communication path scheme

It is so necessary to add more functionality to the arbitrator as shown in figure 5. Here to the hierarchical
scheme of figure 3 a reverse data path is added through which alerts, i.e.: messages notifying asynchronous
events, can be propagated up to the level where they can be properly managed.

4. IMPLEMENTATION ISSUES

In order to efficiently implement the arbitrators which, as we have seen, share a number of common requirements,
we have developed the Arbitrator Framework, i.e.: a small set of classes from which the actual arbitrators
(and their clients) can be derived adding to each only the specific functionalities.

The design is based on two main classes: AbstractArbitrator and ArbitratorInterface to support,
respectively, the derivation of an arbitrator and the implementation of the communication functions in the
client.

4.1 The Arbitrator

The arbitrator architecture is based on a design scheme named Command Pattern'” and involves a few modules
as shown in the UML diagram of figure 6.

§ Although it is in principle possible to avoid errors depending on illegal requests by an exhaustive validation of
command inputs, this is often unpractical for complex systems.
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Figure 6. Arbitrator modules and their relations

AbstractArbitrator: is an extension of the class AOApp (see sect. 1.2) which provides the support for
communication among components through the MsgD-RTDB. This allows the implementation of functionali-
ties needed to execute commands in sequence and to reply to asynchronous alerts. It manages initialization
of the system and receives messages containing either commands or alerts. Alerts are properly managed
by specific code in the derived actual arbitrator and commands are delegated to the CommandHandler for
execution.

CommandHandler: validates, executes and cancels commands; maintains a command history useful for
logging and debugging (and undo, if possible). It doesn’t know anything about the implementation of the
command it is executing: this is the task of the class Command and CommandImpl.

AbstractFSM: extends CommandHandler to add FSM logic. The specific FSM for the implementation of
each arbitrator is designed with FSME!® | so that the actual code may be generated automatically.

AbstractSystem: defines an abstract class to implement a subsystem. It is essentially a wrapper around
a subsystem interface library which, in addition, stores the subsystem’s status.

Command and CommandImpl: are the two classes used for command implementation. The decorator
design pattern'” model has been adopted for the latter which contain the actual code implementing the
command.



4.2 ArbitratorInterface

The ArbitratorInterface class used by clients (e.g.: the AOS) to manage command exchanges with arbitrators
has a very simple structure, as shown in figure 7. Command requests are supported by the Command class from
which actual commands are derived in order to specify details such as the command argument list and, possibly,
the return arguments. The ArbitratorInterface object uses a Serializator to pack command arguments
into messages of the underlying protocol defined by the MsgD-RTDB. The same Serializator class is used by
the arbitrator to unpack data from the command message. Return arguments are managed in the same way by
messages flowing in the opposite direction. It may be noted that in the implementation of Serializator we
have used tools provided by the Boost library'® .

Arbitratorinterface
# _clientName : string
# _logger : Logger*
- _serializator : Serializator
- _arbName : string
+ Arbitratorinterface(arbConfigFile : string, logLevel : int)
+ ~ Arbitratorinterface()
+ setLoglLevel(logLevel : int)
+ notifyAlert(alert : Alert*)
+ requestCommand(cmd : Command*) : Command*
+ cancelCommand()
- send(m : SerializableMessage*) : SerializableMessage*

t
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+ Serializator{logLevel : int)

+ ~ Serializator()

+ serialize(msg : SerializableMessage*, bufLen : int&) : char*

+ deserialize(buf : const char*, bufLen : int) : SerializableMessage*
+ deserialize( : MsgBuf*) : SerializableMessage*

Figure 7. ArbitratorInterface diagram

4.3 Building specific arbitrators

Based on the framework described above, the implementation of a specific arbitrator is a 4 step process:

1. Definition of the command set; i.e.: of subclasses of the class Command, which define commands with their
arguments and the related validation code.

2. Definition of the corresponding set of command implementations (derived from the CommandImpl class)

3. Design of the FSM which describes the relations among commands. The implementation of the machine
is then done automatically by using the FSMC'® tool.

4. Implementation of alert management code in the arbitrator class (derived from AbstractArbitrator).

The implementation of the corresponding client code is even more straightforward: what is needed is an
instance of the ArbitratorInterface class to provide the communication path with the related arbitrator and
then, whenever a command must be issued, the required Command object is instantiated from the set of commands
defined at point 2 above and it is passed to the ArbitratorInterface instance for delivering and processing.

5. CONCLUSIONS

Coordinating a number of loosely coupled processes in a real world application is a fairly complex problem, due
to the many aspects which must be taken into account. This could lead to a logic structure so complex to become
easily unmanageable.



Moreover when the system as a whole is rapidly evolving¥ it is essential to be able to extend the design of
the arbitrator to follow changes in the requirements.

The development of a framework based on sound software engineering principles derived from powerful OO
concepts such as design-patterns allowed us to decompose the problem into a hierarchical tree of smallest problems
while maintaining a common structure to the modules so that many common problems (communication, error
management, event management) could be solved at design level.

The implementation also took advantage from the employ of well tested software tools and libraries, either
developed in house or imported from well established projects.

The result is a robust framework on which the LBT-AdOpt Arbitrator has been based.
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