

LBT-ADOPT TECHNICAL REPORT

Doc.No : Soft-003 CAN: 486f005a Version : 1.0 Date : October 2005

LBT-AdOpt Software Development Schedule November 2005 - January 2007

Luca Fini, Alfio Puglisi, Lorenzo Busoni

ABSTRACT

In the following memo we report the current status of development of the LBT Adaptive Optics System Software and discuss the steps and milestones to the final product.

Contents

1	AO System Architecture	2	
	1.1 Hardware Architecture	2	
	1.2 Software Architecture	3	
2	2 State of Art as of October 2005		
3	Development Plans and Milestones	4	

Glossary of terms and acronyms

- AO System. The hardware and software components of the LBT first light Adaptive Optics System. Includes the Wavefront Sensor, the Adaptive Secondary Mirror, the AO Computer and some auxiliary devices (such as networking hardware).
- AO-CI. The AO Software Command Interpreter: a component of AO-SW which can execute scripts.
- **AO Computer.** The computer (or farm of computers) running the AO-SW.
- AO Console. The operator console of the AO Computer.
- AO-SS. the script executed to startup the AO-SW.
- **AO-SW.** The software dedicated to the managements of the Adaptive Optics System. Its main component is the Supervisor.
- **AOS.** A part (subsystem) of TCS dedicated to interaction with the AO-SW.
- Supervisor. The software system which manages all the components of the AO System
- TCS. Telescope Control System. The software dedicated to the management of the LBT telescope.
- **TCS Computer.** The Computer (or farm of computers) running the TCS.

1 AO System Architecture

The overall architecture of the AO Software and of its main components, the Supervisor and the Real-Time Software, have been described elsewhere [1, 2]. Here we only report a brief resume for the purpose of the following discussion.

1.1 Hardware Architecture

The AO System architecture is shown in figure 1. The main data path (referred to as "real-time data stream") is the stream of data from the Wavefront Sensor (WFS) to the Deformable Mirror. That stream is managed by dedicated hardware and is transported by dedicate optical fibers at a raw maximum rate of 2 Gbps. All operations needed for the adaptive optics loop are managed by real-time software running on DSPs in the Slope Computer and the Deformable mirror.

Management and housekeeping of the AO System components is performed by a software system running on a general purpose computer: the AO Computer. It provides such functionalities as

hardware initialization, firmware uploading, subsystem configuration, diagnostics and the like and is referred to as *AO Supervisor* in the following pages. Supervisor related data flows, used for telemetry controls and for diagnostics purposes are exchanged through standard Gigabit Ethernet connections (red arrows in figure 1).

1.2 Software Architecture

Figure 2 shows a diagram of the Supervisor components and their relationship with the hardware devices and other software components (e.g.: the TCS).

Note that the figure refers to a single AO System. The Supervisor software has been designed to allow for an arbitrary number of components whithout modifying the underneath structure, so that, even from the software point of view, the addition of the second adaptive mirror for the binocular configuration will not modify the overall system architecture.

Each subsystem is implemented as an autonomous process which communicates with other processes via socket based connections through a central facility (MsgD/RTDB).

The MsgD/RTDB provides essentially three functions: i) communication services for interaction between the software components; ii) a variable repository function which allow data sharing between processes; and iii) support for the management of shared memory segments for fast communication of bulk data.

The entire AO Supervisor communicates with the TCS via a dedicated TCS subsystem (the AOS) which is, from the architecture point of view, another MsgD/RTDB client. A brief description of the AOS and its functions can be found in [3].

2 State of Art as of October 2005

Here follows a list of software components which are available as of october 2005. For each component a completion code is specified: **Alpha**, currently in developing stage; **Beta**, ready for laboratory tests, may need updates for the final telescope version; **Release**, ready for the final version.

	Completion	
Component	Status	Description
MsgD/RTDB	Release	The Message Dispatcher and Real-Time Database was the
		first component developed and is intensively used in all run-
		ning programs.
BCUCtrl	Release	Device controllers for BCU based hardware (the Adaptive
		Secondary and the Slope Computer).
GUI	Beta	Graphical User interfaces for laboratory use (and engineering
		operations at the telescope).
PowerCtrl	Release	Control programs for power switches and similar devices.
SimpleMotorCtrl	Beta	Control program for stepper motors. Used for: Rerotator,
		Filter Wheels, ADC.
StageCtrl	Beta	Control program for bayside linear stages.
MirrorDiagnostic	Alpha	Adaptive Mirror diagnostic programs.
StartUp	Alpha	Startup procedures.
TTCtrl	Release	Control program for the Tip-Tilt signal generator board.
WFSCtrl	Release	Control program for the WFS CCD camera.
AOS	Alpha	Interface to TCS.
Libraries	Release	The complete set of AO-SW libraries.
IDL	Beta	Support for IDL procedures.
PyModules	Beta	Wrappers for Python code and high level Python library.

3 Development Plans and Milestones

The planned activities for the completion of the AO Software project are detaild in the following table.

Time	Actions and milestones
Nov 2005	Preliminary integration test in Tucson. This will address problems such
	as correct use of API's, correct use of TCS provided software facilities,
	interaction between the two software teams, problems resulting from
Dec 2005	U.S. environment, and the like.
Dec 2005	ment at the telescope development of prototype AOS with full func-
	tionality, documentation.
Jul 2006	Support of AO System test at Arcetri's solar tower.
Nov 2006	AOS integration test at the telescope.
Dec 2006	AOS integration test at Arcetri's solar tower with operating TCS. AO-
	SW + AOS version 1.0 is ready.
Feb 2007	Test of Engineering state functions and support of AO System $\#1$
	commissioning.
Apr 2007	Test of OBSERVATION state functions as final actions of the AO unit $\#1$
	commissioning.
May 1 2007	AO-SW + AOS version 1.1 is operational at the telescope.
May 2007	Upgrade of AO-SW using lessons learned during first monts of actual
	usage.
Nov 2007	Installation of $AO-SW + AOS$ version 2.0 at the telescope for the sup-
	port of unit $#2$ commissioning.
Feb 2008	AO-SW + AOS version 2.1 is operational at the telescope

References

- L. Fini, A. Puglisi, and A. Riccardi, "LBT-adopt control software," in Advanced software, control, and communication systems for astronomy. Edited by L. Hilton and G. Raffi, vol. 5496 of Proc. SPIE, pp. 528-537, 2004.
- [2] R. Biasi, M. Andrighettoni, D. Pescoller, "LBT AO Real Time Software". Presentation at AO Progress Report Meeting. February 2005. See: http://lbtwww.arcetri.astro.it/adopt/lbtao/review-feb-2005/
- [3] L. Fini, A. Puglisi, "Integration of the AdOpt Software into TCS", *LBT-AO Technical Report* Soft-002, Firenze, October 2005.