
FLAO System operator manual 
 

 

 

1. OS installation and configuration ................................................................................................. 6 
1.1. Network configuration ........................................................................................................... 6 
1.2. Kernel parameters .................................................................................................................. 6 
1.3. Add non-default repositories .................................................................................................. 7 
1.4. Add Zeroc-ice repository ....................................................................................................... 7 
1.5. Install additional packages ..................................................................................................... 7 
1.6. Install IDL .............................................................................................................................. 8 

1.6.1. IDL related notes ............................................................................................................. 8 
1.7. Add shared libraries to the runtime path ................................................................................ 9 
1.8. Support for NFS mounts ........................................................................................................ 9 
1.9. User accounts ......................................................................................................................... 9 

1.9.1. flao account configuration .............................................................................................. 9 
1.9.2. Development and maintenance account configuration ................................................... 9 

1.10. 4D and IDL ........................................................................................................................ 10 
2. Software installation ................................................................................................................... 10 

2.1. Bulding a test version of FLAO Supervisor ......................................................................... 10 
2.1.1. Checkout FLAO Supervisor source tree and prepare for building ............................... 10 
2.1.2. Building and installing the source code ........................................................................ 11 
2.1.3. Installing configuration ad calibration data .................................................................. 11 

2.2. Tools for automatic installation, deployment and usage...................................................... 11 
2.2.1. prepare.py ...................................................................................................................... 12 
2.2.2. deploy.py ....................................................................................................................... 13 
2.2.3. flao.py ........................................................................................................................... 14 
2.2.3.1. Housekeeping commands .......................................................................................... 15 
2.2.3.2. AO commands............................................................................................................ 15 

2.3. Implementation Notes .......................................................................................................... 15 
2.3.1. AdOpt servers ............................................................................................................... 15 
2.3.2. Runtime accounts on AdOpt servers ............................................................................. 15 
2.3.3. More details about deploy.py....................................................................................... 15 
2.3.4. More details about flao.py ............................................................................................ 16 

2.4. Configuring AO data backup ............................................................................................... 16 
3. Software overview ...................................................................................................................... 17 

3.1. Control computers ................................................................................................................ 17 
3.2. Complete start/stop/restart ................................................................................................... 17 
3.3. Overall software scheme ...................................................................................................... 18 

3.3.1. System processes........................................................................................................... 18 
3.3.2. AdSec control processes ............................................................................................... 19 
3.3.2.1. IDL issues .................................................................................................................. 19 
3.3.3. WFS control processes .................................................................................................. 19 
3.3.4. Arbitrators ..................................................................................................................... 19 
3.3.5. AOS ............................................................................................................................... 19 

3.4. Engineering interface levels ................................................................................................. 20 
4. AOS GUI .................................................................................................................................... 20 

4.1. Starting the GUI ................................................................................................................... 20 
4.2. Status information display ................................................................................................... 20 

4.2.1. Connection to the AO system ....................................................................................... 21 
4.2.2. Overall AO system status .............................................................................................. 22 
4.2.3. Wfs status and commands ............................................................................................. 23 



4.2.4. Adaptive Secondary status ............................................................................................ 23 
4.2.5. Adaptive Secondary on/off/set/rest ............................................................................... 24 
4.2.5.1. Safety locks ................................................................................................................ 24 
4.2.6. Command execution reporting ...................................................................................... 24 

4.3. Command GUI ..................................................................................................................... 25 
4.3.1. AO commands............................................................................................................... 26 

5. Engineering GUIs ....................................................................................................................... 27 
5.1. Starting the Engineering GUIs ............................................................................................. 27 

6. Wfs board status GUI .................................................................................................................. 28 
6.1. Starting the GUI ................................................................................................................... 28 
6.2. GUI description .................................................................................................................... 29 

7. Wfs Arbitrator GUI ..................................................................................................................... 29 
7.1. Starting the GUI ................................................................................................................... 31 
7.2. GUI description .................................................................................................................... 31 

7.2.1. Status indicators ............................................................................................................ 31 
7.2.2. Startup/Shutdown commands ....................................................................................... 31 
7.2.3. AO parameters .............................................................................................................. 32 
7.2.4. AO loop open/close/pause ............................................................................................ 33 
7.2.5. Rotator tracking............................................................................................................. 34 
7.2.6. Camera lens tracking ..................................................................................................... 34 
7.2.7. ADC tracking ................................................................................................................ 34 
7.2.8. Anti drift ........................................................................................................................ 35 
7.2.9. Dark frame and slopenull acquisition ........................................................................... 35 
7.2.10. Disturbance ................................................................................................................. 35 
7.2.11. Offsets ......................................................................................................................... 36 
7.2.12. WFS displays .............................................................................................................. 37 
7.2.13. CCD display ................................................................................................................ 37 
7.2.13.1. Controls .................................................................................................................... 38 

8. WFS Hardware GUI ................................................................................................................... 39 
8.1. Starting the GUI ................................................................................................................... 39 
8.2. GUI description .................................................................................................................... 39 

8.2.1. Power controller ............................................................................................................ 40 
8.2.2. CCD39 .......................................................................................................................... 41 
8.2.2.1. Status .......................................................................................................................... 41 
8.2.2.2. Controls ...................................................................................................................... 42 
8.2.3. CCD47 .......................................................................................................................... 43 
8.2.4. Filter wheel #1 .............................................................................................................. 43 
8.2.5. Filter wheel #2 .............................................................................................................. 44 
8.2.6. Status check................................................................................................................... 44 
8.2.7. Temperatures ................................................................................................................. 45 
8.2.8. Tip-tilt ........................................................................................................................... 46 
8.2.9. Tip-tilt low level............................................................................................................ 48 
8.2.10. Pupil rerotator ............................................................................................................. 48 
8.2.11. Cube stage ................................................................................................................... 49 
8.2.12. Cube rotator................................................................................................................. 50 
8.2.13. Bayside stages ............................................................................................................. 51 
8.2.13.1. Displays .................................................................................................................... 52 
8.2.13.2. Controls .................................................................................................................... 53 
8.2.14. Source lamp................................................................................................................. 53 
8.2.15. Camera lens ................................................................................................................. 53 
8.2.16. ADC wheels #1 and #2 ............................................................................................... 54 
8.2.17. ADC high-level ........................................................................................................... 55 



8.2.18. Board setup ................................................................................................................. 56 
8.2.19. System tests ................................................................................................................. 58 
8.2.20. Quick selection ............................................................................................................ 58 

9. AdSec operation .......................................................................................................................... 58 
9.1. Safety Remarks .................................................................................................................... 58 
9.2. Quick start with AOS GUI (from BP4 built ahead) ............................................................. 59 
9.3. Quick start with Engineering GUI ....................................................................................... 62 
9.4. Quick recovery from Failure ................................................................................................ 64 
9.5. Adaptive Secondary startup and shutdown .......................................................................... 65 

9.5.1. With Engineering GUIs ................................................................................................ 65 
9.6. More on GUIs ...................................................................................................................... 66 

9.6.1. AdSec Mirror GUI ........................................................................................................ 66 
9.6.2. AdSec Housekeeper GUI .............................................................................................. 67 

9.7. Housekeeper configuration files .......................................................................................... 73 
10. Arbitrator GUI ........................................................................... Error! Bookmark not defined. 

10.1. Starting the GUI ................................................................. Error! Bookmark not defined. 
10.2. GUI description .................................................................. Error! Bookmark not defined. 

10.2.1. Status indicators .......................................................................................................... 64 
10.2.2. Startup/Shutdown command ....................................... Error! Bookmark not defined. 
10.2.2.1. Safety locks .............................................................. Error! Bookmark not defined. 
10.2.3. Shape control............................................................... Error! Bookmark not defined. 
10.2.4. Shape offloads ............................................................. Error! Bookmark not defined. 
10.2.5. Zernike application ..................................................... Error! Bookmark not defined. 
10.2.6. Reconstructor control and gain ................................... Error! Bookmark not defined. 
10.2.7. Disturbance control ..................................................... Error! Bookmark not defined. 
10.2.8. Focal station selection ................................................. Error! Bookmark not defined. 

11. AdSec Arbitrator engineering displays ...................................... Error! Bookmark not defined. 
11.1. AdSec display (AdSec Mir GUI) ....................................... Error! Bookmark not defined. 

11.1.1. Starting the GUI .......................................................... Error! Bookmark not defined. 
11.1.2. GUI description ........................................................... Error! Bookmark not defined. 

11.2. AdSec housekeeper GUI .................................................... Error! Bookmark not defined. 
11.2.1. Starting the GUI .......................................................... Error! Bookmark not defined. 
11.2.2. GUI description ........................................................... Error! Bookmark not defined. 

12. Low-level GUIs ......................................................................................................................... 73 
12.1. System processes GUI ....................................................................................................... 73 
12.2. Variable inspector tool ....................................................................................................... 74 
12.3. Text-based tools ................................................................................................................. 75 

12.3.1. IDL terminal ................................................................ Error! Bookmark not defined. 
12.3.2. Python shell ................................................................. Error! Bookmark not defined. 
12.3.3. Thrdtest ....................................................................... Error! Bookmark not defined. 
12.3.4. Consumer .................................................................................................................... 75 
12.3.5. BCUread...................................................................... Error! Bookmark not defined. 
12.3.6. Log files ...................................................................................................................... 75 
12.3.6.1. Log file archiving ..................................................................................................... 76 
12.3.7. Telemetry files ............................................................................................................ 76 
12.3.8. Log viewer .................................................................. Error! Bookmark not defined. 

13. Common tasks ............................................................................................................................ 76 
13.1. System preparation ............................................................................................................. 76 

13.1.1. Using the  AOSGUI .................................................................................................... 76 
13.1.2. Using the Arbitrator GUIs........................................................................................... 76 

13.2. System shutdown after observation ................................................................................... 77 
13.2.1. Using the AOSGUI ..................................................................................................... 77 



13.2.2. Using the Arbitrator GUIs........................................................................................... 77 
13.3. Seeing limited observation ................................................................................................. 77 
13.4. AO observation sequence ................................................................................................... 77 

13.4.1. PresetAO ..................................................................................................................... 78 
13.4.1.1. Error conditions and recovery .................................................................................. 78 
13.4.2. AcquireRefAO ............................................................................................................ 78 
13.4.2.1. Error conditions and recovery .................................................................................. 79 
13.4.3. StartAO ....................................................................................................................... 79 
13.4.3.1. Error conditions and recovery .................................................................................. 80 
13.4.4. PauseAO/ResumeAO .................................................................................................. 80 
13.4.4.1. Error conditions and recovery .................................................................................. 80 
13.4.5. OffsetAO ..................................................................................................................... 80 
13.4.6. Other failure modes ..................................................................................................... 80 
13.4.6.1. AdSec safety fault .................................................................................................... 80 
13.4.6.2. Hardware failure ...................................................................................................... 81 

14. Calibration procedures ............................................................................................................... 81 
14.1. Pupil calibration ................................................................. Error! Bookmark not defined. 

14.1.1. Pupil acquisition .......................................................... Error! Bookmark not defined. 
14.1.2. Pupil optimization ....................................................... Error! Bookmark not defined. 

14.2. Interaction matrix calibration ............................................................................................. 81 
14.2.1. Preparation .................................................................................................................. 81 
14.2.2. Measurement parameters ............................................................................................ 81 
14.2.2.1. Modal basis .............................................................................................................. 81 
14.2.2.2. WFS CCD binning ................................................................................................... 82 
14.2.3. Modal history generation ............................................................................................ 82 
14.2.4. Interaction matrix measurement.................................................................................. 83 
14.2.5. Reconstructor matrix generation ................................................................................. 86 
14.2.5.1. Iteration .................................................................................................................... 86 

15. Saving diagnostic data ............................................................................................................... 87 
15.1. Data format description ...................................................................................................... 87 
15.2. Optical Loop Diagnostic GUI ............................................................................................ 89 

16. Elaboration library (elab_lib) ..................................................................................................... 90 
17. Configuration files ..................................................................................................................... 90 

17.1. File format .......................................................................................................................... 90 
17.2. MsgD configuration file ..................................................................................................... 91 

17.2.1. Configuring peering .................................................................................................... 91 
17.2.2. LBT setup .................................................................................................................... 91 
17.2.3. LTB configuration files ............................................................................................... 92 
17.2.4. How to check if peering works correctly .................................................................... 92 

17.3. Common keywords ............................................................................................................ 92 
18. Configuration keywords ............................................................................................................. 93 
19. Table of wfs, adsec and AO status values and commands accepted ....................................... 103 

19.1. Wfs command table ......................................................................................................... 103 
19.2. AdSec Command table..................................................................................................... 104 
19.3. AO Command table ......................................................................................................... 104 

 

  



 
Modification Record 

Version Date Author 
Section/Paragraph 

affected 
Reason/Remarks 

1.0 19 Nov 2015 A. Puglisi  

First release of the 

document as part of the 

FLAO document package 

1.1 25 Aug 2016 A. Puglisi, F. Rossi 

Added sections 1,2 

Modified sections 

13,15,17 

Integrating relevant content 

scattered in other 

documents. 

1.2 26 Aug 2016 A. Puglisi 

Modified sections 

14, 16, 17. Fixed 

layouts in section 2. 

Added description of 

diagnostic data format, 

description of configuration 

files and several 

configuration keywords. 

1.3 6 Sep 2016 A. Puglisi, F. Rossi 

Added section 1.6, 

modified section 

1.4 

Integrated data backup setup 

instructions, added note 

about installation of 

portmap. 

1.4 26 Sep 2016 A. Puglisi 
Detailed section 

16.2 
MsgD peering. 

 

  



 

1. OS installation and configuration 
OS installation and configuration, following the steps described in the following paragraphs, must 

be done with root privileges. 

 

Install selecting the "software development workstation" setting. This will install most required 

packages automatically. After the installation from a distribution media, a full update is suggested. 

The list of RPMs after OS installation + upgrade is in: 

 rpmlist-centos6.txt for CentOS 6.x 

 rpmlist-centos7.txt for CentOS 7.x 

1.1. Network configuration 

 Put in /etc/hosts the addresses of the devices as specified in IpNumbers. 

 The firewall configuration must allow network packets from the BCU's. The easiest way is 

to declare the ethernet interface of the BCU subnet as trusted. 

1.2. Kernel parameters 

 

In order to full configure the Adaptive Secondary it's needed to expand (if not) the shared memory 

size provided by the Operating System. 

To check if there is enough shared memory you can write (from root): 

# sysctl -a | grep shm 

and look for the lines: 

kernel.shmall = 131072 

kernel.shmmax = 536870912 

If you have values for kernel.shmall and kernel.shmmax have lower values, please 

change /etc/rc.d/rc.localfile adding the two lines: 

sysctl -w kernel.shmall=131072 

sysctl -w kernel.shmmax=536870912 

This will set the values at reboot. You may also give the commands at a command propmpt for 

immediate effect. 

http://aowiki.arcetri.astro.it/pub/FLAO/CentOS67Installation/rpmlist-centos6.txt
http://aowiki.arcetri.astro.it/pub/FLAO/CentOS67Installation/rpmlist-centos7.txt
http://aowiki.arcetri.astro.it/FLAO/IpNumbers


1.3. Add non-default repositories 

Some packages (mainly related to Qt version 3) are not available in the default CentOS6.x 

repository, You must add both the epel and the atrpms repositories to the yum list as shown below: 

EPEL CentOS 6 

 

wget http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm 

rpm -Uvh epel-release-6-8.noarch.rpm 

ATRPMS You must add a file: /etc/yum.repos.d/atrpms.repo with the following content: 

[atrpms] 

name=Red Hat Enterprise Linux $releasever - $basearch - ATrpms failovermethod=priority 

baseurl=http://www.mirrorservice.org/sites/dl.atrpms.net/el$releasever-

$basearch/atrpms/stable 

enabled=1 

gpgcheck=0  

EPEL CentOS 7: 

http://dl.fedoraproject.org/pub/epel/7/e/epel-release-7-5.noarch.rpm 

1.4. Add Zeroc-ice repository 

Note: Ice 3.6 which is the latest available at the moment of this writing seems not to provide RPMs 

for python support. Thjere is a python package available from PYPI, but only for python 3. We 

currently choose to develop against Ice 3.5 

The easiest way to retrieve the code is to add the proper file to the yum directory as follows: 
CentOS 6.x: 

cd /etc/yum.repos.d 

sudo wget https://zeroc.com/download/Ice/3.5/el6/zeroc-ice-el6.repo 

CentOS 7.x: 

cd /etc/yum.repos.d 

sudo wget https://zeroc.com/download/Ice/3.5/el7/zeroc-ice-el7.repo 

1.5. Install additional packages 

The following are required packages from the CentOS distribution: 

http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm


yum install qt-devel PyQt gmp-devel pyfits qt3-config kdelibs3-devel libXpm-devel cfitsio-

devel lrzsz  

Depending on the initial selection of features when installing CentOS, it might be necessary to 

install some the following packages: 

yum install gcc-c++ subversion boost-devel ncurses-devel python-devel readline-devel 

armadillo-devel mysql++-devel openmotif-devel xterm 

Then we need the ICE packages: 

yum install ice ice-libs ice-c++-devel ice-python ice-python-devel 

Note: the FLAO supervisor build procedure requires that a "version independent" link is created as 

in the following example (Note: make the link to the actually installed Ice version): 

 ln -s /usr/share/Ice-3.4.2 /usr/share/Ice 

1.6. Install IDL 

You must follow directions provided by IDL vendor. Current tested version is IDL 7.1, but other 

releases may work also. 

1.6.1. IDL related notes 

Note 1: do not forget to install/configure the license 

Note 2: make sure that the “portmap” program is installed (it is not on Centos7 default distribution): 

   sudo yum install portmap 

 

Note 3: Under CentOS 6.x the idlrpcserver can only be started with root privileges. As an 

alternative Exelis suggests to also specify the port as follows: 

   idlrpc -port=0x20001000 

This seems not to work in all circumstances. We found more stable a different solution: 

 Change to root the ownership of the idlrpc executable and declare the same file setuid: 

chown root <idl_rpc_executable> 

chmod +s <idl_rpc_executable> 



The location of the executable file depends on the IDL release. The FLAO installation procedure 

has a tool to find where IDL is installed, so you can delay this step after the preparation of the 

installation environment described below. 

1.7. Add shared libraries to the runtime path 

Create library path files as follows (Note: the IDL path may vary): 

echo /usr/local/qwt-5.1.2/lib > /etc/ld.so.conf.d/qwt.conf 

echo /usr/local/exelisvis/idl71/bin/bin.linux.x86_64 > /etc/ld.so.conf.d/idl.conf   

Then refresh the path: 

/sbin/ldconfig -v 

1.8. Support for NFS mounts 

 The ADSEC server must be set to export via NFS the directory /local/aomeas to the WFS 

server 

 The WFS server must NFS mount the directory /local/aomeas exported by the ADSEC 

server. 

Note 1: In order to allow proper access to files the flao user account and other accounts used for 

development should have the same UID on the two servers. 

Note 2: To allow the expected propagation of UID in NFS mounted filesystems the 

option vers=3 must be used in file /etc/fstab of the mounting client. 

1.9. User accounts 

 

The production FLAO software will run from the account flao. This account must not be used for 

any software development whatsoever. 

Software tests and any other maintenance operation will be performed from any other suitable user 

accounts. 

1.9.1. flao account configuration 

 

The flao account must have read/write access to the FLAO working directories: 

/local/aolog  

/local/aomeas (Note: this is a real directory on ADSEC server and is NFS mounted on the WFS 

server. 

The two directories must be created in advance and must have proper owner and permissions 

(suggested owner:group = flao:flao, suggested permissions: drwxrwxr-x) 

1.9.2. Development and maintenance account configuration 

 

Development and maintenance user accounts must have read/write access to the 

directory /local/aomeas. (Suggestion: add user accounts used for development to the flao group) 



1.10. 4D and IDL 

To use the 4D PhaseCam 4020 with the IDL wrapper: 

 Add the PYRO_CONFIG_FILE environment variable (i.e equals to 

$(ADOPT_ROOT)/conf/left/Pyro_Client.conf) 

 Set the variable PY_VER in Makefile.gen 

2. Software installation 

2.1. Bulding a test version of FLAO Supervisor 

The FLAO Supervisor can (and must) be built and tested from any convenient account which will 

not be used for the production installation. The account needs (and must have) only normal user 

privileges. Here follows the description of main steps. 

2.1.1. Checkout FLAO Supervisor source tree and prepare for building 

You must checkout from the proper SVN repository to get the FLAO version you want to install 

into any convenient directory. The following example gets the source tree from the SVN trunk and 

checks it out onto ./source (You have to specify an authorized username and you'll be prompted for 

a password): 

svn checkout "svn+ssh://username@adopt.arcetri.astro.it/aogroup/svn/AOSupervisor/trunk 

source" 

cd source 

Then you must set up the environment to allow compilation: 

python prepare.py 

make 

source flao_environment.sh 

The prepare procedure creates some working directories on your HOME checks the availability of 

IDL and creates the file flao_environment.sh with the environment definition required for the 

compilation of FLAO Supervisor. 

You may want to add the source command to your environment setup procedure at login 

(usually .bashrc) to have it executed at every login. 

Note: If the prepare.py procedure has executed correctly, you now can find the location of IDL 

executable files as follows: 

echo $IDLLIBDIR 

And you can modify idlrpc properties as directed above (see paragraph on IDL) 

http://aowiki.arcetri.astro.it/bin/edit/FLAO/PhaseCam?topicparent=FLAO.CentOS67Installation


2.1.2. Building and installing the source code 

NOTE: please be sure you have sourced the environment definition 

procedure flao_environment.sh before attempting to build the Supervisor. 

The FLAO Supervisor build process is in four steps: 

 

1. Build the contributed software: 
 

cd $ADOPT_SOURCE/contrib 

make (see note below) 

sudo make install 

2. Compile and install the Supervisor 
 

cd $ADOPT_SOURCE 

make 

make install    

Note: verify that the install procedure has set proper ownership (root) and permissions (setuid) to 

the following executables: mirrorctl, masterdiagnostic 

2.1.3. Installing configuration ad calibration data 

Calibration and configuration data are maintained in a different SVN repository. To install them 

you must first checkout the latest version onto a suitable directory: 

svn checkout "svn+ssh://username@adopt.arcetri.astro.it/aogroup/svn/AOSupervisor/confcalib 

confcalib  

Then to install configuration and calibration files: 

cd .../confcalib 

make install_conf 

make install_calib 

 

2.2. Tools for automatic installation, deployment and usage 
 

In the following page we resume the usage of procedures to install FLAO software, deploy on the 

AdOpt servers and start stop the software subsystem. 

The management of FLAO software is performed by three procedures (which can be found at the 

root of the source code directory tree as checked out from the SVN repository. 



 prepare.py. Environment setup for creating an installation to be used for software 

development and tests. The environment is suitable to run a single subsystem 

(adsec/ wfs, right / left). 

 deploy.py. To deploy a runtime build of FLAO software onto the four subsystem servers. 

The deployed build is named TEST and is suitable for running the AO system at the 

telescope. The same procedure will be used at the end of tests to release (freeze) the build 

after testing. 

 flao.py. Procedure to be used by the TO to manage the FLAO software, i.e.: select an 

available build, start/stop processes and the like. This procedure is intended to be usable as a 

standalone tool, i.e.: it does not need any other FLAO software component and can be run 

on any computer with an SSH access to the FLAO servers. 

Here follows a detailed description of the procedures and their use. 

2.2.1. prepare.py 

The purpose of the procedure is to setup a proper environment for FLAO software development 

(and/or maintenance) and is usually run once after cyhecking out a fresh version of the FLAO 

source code. Here follows the help page which comes out with python prepare.py. 

 FLAO Supervisor environment setup procedure.  Version 2.4    L.Fini, April 2015. 

Usage: 

python prepare.py check                       Check environment 

python prepare.py make                        Create environment 

python prepare.py set adsec|wfs left|right    Set installation target 

This procedure operated on the local environment to be used for build and tests.  The 

actual installation of "science ready" FLAO system must be done with: 

python deploy.py 

The procedure provides three subcommands: 

 make. The make subcommand creates (or checks) the environment for development, more in 

details: 

o Creates local runtime directories: ~/aoroot, ~/aolog, ~/aomeasures. 

o Creates a private/public key file pair to be used by ssh and stores them 

into ~/.ssh directory of the current user. 

o Creates an identity code for the specific build. 

o Creates a bash compatible file for setting up environment 

variables: flao_environment.sh== 

 

The environment definition file must be explicitly executed to take effect. If 



desired it can be executed from the bash startup procedure (usually 

=~/.bashrc= ). This is enough to be able to make and install the FLAO code, 

configuration and calibration files. 

 

Note 1: when installing and running the development build, executable, configuration 

and runtime files are all stored in users' specific directories. 

 

Note 2: In order to be able to execute the FLAO software, the specific server identity 

(i.e.: adsec / wfs and left / right) must be established with the setsubcommand. 

 check. The check subcommand verifies the environment to check that it is properly set for 

compilation and installation of the FLAO software. 

 set. The set subcommand defines the specific identity of the current build so that it can operate 

as one of the AdOpt servers (i.e.: either as adsec or as wfs and with the required side 

(right or left). 

 

The effect of the procedure is to create the required symbolik link in the ADOPT_ROOT 

runtime directory tree and to generate a new version fo the environment setup file 

flao_environment.sh suitable for running the code with the proper identity. 

 

Note: the environment setup procedure must be explicitly executed in order to have effect. 

2.2.2. deploy.py 

 

The deploy procedure has the purpose to deploy all required runtime files onto the four AdOpt 

servers. The procedure assumes that the servers have been already configured for the purpose. Each 

server must have an account flao which will be used for software deployment and to run the FLAO 

software. 

The procedure is intended to be launched from the root of the FLAO software source tree after 

properly setting the environment as defined in the flao_environment.sh file generated by prepare.py. 

Moreover the full software generation sequence: make, make install, make 

install_conf and make_install_calib must have been completed. 

Here follows the relevant items from the help page as displayed by python deploy.py: 

 FLAO Supervisor deployement procedure. Version 1.6    L.Fini, May 15, 2015   Usage: 

python deploy.py [-v] command [args] 

 

-v: Verbose command mode (for debug) 

Commands: 

  key:   Send SSH public key to targets (to be done once) 

  rel:   Release the TEST installation 

  test:  Deploy a test installation (possibly overwriting a previous one) 

The procedure provides four subcommands: 



 key. Transmits the ssh public key specific for FLAO management to the four AdOpt servers. 

Usually this will require to specify the password defined for the flao user on the four 

servers. This operation must be done once, before a build is deployed for the first time. 

 test. Deploy current build as TEST build. All the required files will be copied onto proper 

directories on the four targets and required links will be created. The deployment can be 

repeated, in which case the new build is written over the previous one. 

 

Note: After the deployment the current setup of server is not modified, i.e.: the previously 

active build (if any) is still active. The selection of active build can be done with 

the flao.py procedure. 

 rel. Releases the TEST build as an science ready build. The name is generated automatically 

and is of the form: 2105X (current year plus a single letter). 

 lnk. Redoes the links in the specified build (for test purposes) 

The deploy.py also provides a copy of commands provided by flao.py. 

 

2.2.3. flao.py 

 

This procedure is intended to be used by Telescope Operators to manage the runtime FLAO 

software system. For this purpose it can be used standalone on any computer provided with a 

standard python (2.x) installation and allowed to connect via ssh to the FLAO servers. 

 

Note: because the procedure spawns standard unix commands and requires an X11 server, it is not 

supported in MS Windows environments (and has never been tested on Mac OS). 

Here follows the help page obtained with python flao.py: 

 

flao.py      Vers. 1.3            Luca Fini, 25 May, 2015 

This file contains standalone functions to manage the FLAO 

supervisor procedures. 

Usage: 

      python flao.py [-v] command [options]  

      -v:    Verbose mode (for debug) 

Housekeeping commands: 

      env node        Show environment at remote node 

      list            Show available builds 

      set  build      Set active build 

http://aowiki.arcetri.astro.it/FLAO/FlaoPy


      show            Show active build 

      targets         Show the names of AdOpt servers and their roles. 

 

AO commands: 

      start adsec|wfs r|l  Start the specified subsystem 

      stop adsec|wfs r|l   Stop the specified subsystem 

      check adsec|wfs r|l  Check the specified subsystem 

      eng adsec|wfs r|l    Starts the engineering GUI on the specified subsystem 

2.2.3.1. Housekeeping commands 

 

To be used for various check of the build installations. 

 env. Show FLAO related environment at given server (for debug purposes) 

 list. List available builds. 

 show. Show currently active build 

 set. Set the specified build as active 

 targets. List the AdOpt servers and their roles. 

2.2.3.2. AO commands 

 

To be used for managing the FLAO Supervisor Software. 

 start. Start the specified subsystem (e.g.: start adsec right) 

 stop. Stop the specified subsystem. 

 check. Check the specified subsystem 

 eng. Start the engineering GUI of specified subsystem. 

2.3. Implementation Notes 

2.3.1. AdOpt servers 

The procedures described above have the specification of AdOpt servers and their roles built in. If 

server names will change in the future, the related tables into the file flao.py must be changed 

accordingly. The relevant table name is: MTGRAHAM_HOSTS. 

2.3.2. Runtime accounts on AdOpt servers 

The procedures rely on proper configuration of a user account on the four Adopt servers. The userid 

must be: flao, with any suitable password. A specific public key will be stored in the .ssh directory 

of the account when using the key subcommand of deploy.py procedure. After that all remote 

operations will be done using the key, i.e. without the need to specify a password. 

2.3.3. More details about deploy.py 

The deploy.py procedure has some more options useful for developers and debuggers. Here follows 

the additional help output which is shown with: python deploy.py -h 



ADDITIONAL INFO FOR DEVELOPERS 

The procedure accepts an additional option:  

   -a:   select a list of target servers available at Arcetri to be used for tests instead 

of the servers used for science ready operations. 

The procedure also accept additional commands: 

   fake:  Make a FAKE build (for debugging) 

   lnk:   Redo build links 

Note: The FAKE build just contains a fake implementation of the FLAO process launching python 
scripts. 

2.3.4. More details about flao.py 

The flao.py procedure has some more options useful for developers and debuggers. Here follows the 
additional help output which is shown with: python flao.py -h 

   ADDITIONAL INFO FOR DEVELOPERS 

The procedure accepts an additional option:  

 -a:   select a list of target servers available at Arcetri to be used for tests instead of 

the servers used for science ready operations. 

2.4. Configuring AO data backup 

 

There are two levels of data mirroring active at LBTO: 

 

 Local data mirroring: from server internal disks to local shared SAN disks. 

 Remote data mirroring: from SAN disks to NAS in Arcetri (not yet finished) 

 

Each level provides for mirroring log files and AO data 

 

Log files: 

 

adsecdx /local/aolog 
 

/ao-data/adsecdx/aolog 

wfsdx /local/aolog 
 

/ao-data/wfsdx/aolog 

adsecsx /local/aolog 
 

/ao-data/adsecsx/aolog 

wfssx /local/aolog 
 

/ao-data/wfssx/aolog 

 

Calibration data: 
 



adsecdx /local/towerdata/adsec_data 
 

/ao-data/adsecdx/adsec_data 

adsecsx /local/aomeas/adsec_calib 
 

/ao-data/adsecdx/adsec_data 

 

 

Data mirroring is performed by the archiver.py procedure. This procedure is designed to be 

regularly run (for example once a day) from a crontab file. Each of the four AO computers should 

have this line in their crontab file: 

 

MM HH * * * <YOUR_PATH_TO_ADOPT_ROOT>/py/archiver.py –r 
 

Where MM and HH is a suitable time for data backup (usually, in the middle of the day, in order to 

avoid network traffic during the night), and the path should be set in order to point to the current 

AO software installation. The “-r” option tells the procedure to execute all the configured backup 

jobs. 

 

Further information on the archiver.py procedure, how to configure backup jobs, etc. is available in 

the archiver.py file itself as a Python docstring. 

 

 

 

3. Software overview 

3.1. Control computers 

 

The FLAO software runs on two workstations, called wfsdx and adsecdx, dedicated respectively to 

control the WFS and the Adaptive Secondary. These workstations are AO-specific and are not part 

of the TCS server farm, but are accessible via ssh from any TCS machine or operator/observer 

workstation. The software runs on these workstations as user AOeng. 

3.2. Complete start/stop/restart 

 

The FLAO software is not a single program, but a collection of processes dedicated to hardware 

control, plus several more processes which coordinate their actions to perform most AO operations.  

All processes are normally always running, but it may happen that the software must be shutdown 

and/or restarted (for example, in case of computer power failures). 

A few commands have been implemented on the two workstations to start and stop the complete list 

of processes. These are: 

 

 w_start   (on wfsdx) to start all the wfs-related processes 

 w_stop   (on wfsdx) to stop all the wfs-related processes 

 w_restart (on wfsdx) to execute a stop followed by a restart 

 w_check (on wfsdx) to check whether the wfs software is running 

 

 adsc_start (on adsecdx) to start all adsec-related processes 

 adsc_stop (on adsecdx) to stop all adsec-related processes 

 adsc_restart (on adsecdx) to execute a stop followed by a restart 

 adsc_check (on adsecdx) to check whether the adsec software is running 

 



All these commands are text-based and can be issued by any text terminal on the control 

workstation. They will report the execution status and any errors which may arise. Multiple start 

commands will cause no harm. 

  

The two software sets (wfs and adsec) are in constant communication but are independent and can 

be stopped/started separately in any order. 

 

3.3. Overall software scheme 

 

The following diagram gives a general description of how the AO software is structured: 

 

 
Note the various horizontal levels: AOS, Arbitrator, Hardware control. 

 

The following paragraphs give a short description of the various software components, including 

the three levels detailed above. 

3.3.1. System processes 

 

The lowest (and usually invisible) level is composed by the system processes which perform all 

housekeeping and message-passing tasks, and which maintain the overall AO status. A detailed 

knowledge of these processes is not required except for debug purposes, since at this level all 

operations are automatic.  

 

However a list of the fundamental processes follows: 

 

 MsgD-RTBD (message daemon and real-time database): one copy for each workstation is 

running. Manages message passing between all the other processes, maintains a central 

variable repository (similar to the telescope Data Dictionary), and manages shared memory 



buffer for quick transfer of sizeable volumes of diagnostic data. Any kind of problem with 

the MsgD is usually fatal to the AO system, requiring a complete restart. 

 MirrorController: the name is slightly misleading since this is the main hardware-

communicator process also for the WFS. Manages communication with the Microgate 

BCUs onboard the Secondary Mirror and the WFS. 

 MasterDiagnostic: manages the diagnostic data stream coming from the AO hardware 

 Pinger: keeps an eye on the AO network and signals if something goes offline. 

3.3.2. AdSec control processes 

 

The actual AdSec control program is written the IDL language and is managed by the IdlCtrl 

process. The IdlCtrl allows command-line like access to the IDL control process for debug 

purposes, but the usual method of controlling the mirror is to use high-level interfaces like the 

AdSec Arbitrator (see chapters 3.3.4 and chapter 9). Various other processes handle housekeeping 

details of the mirror hardware, and perform continuous surveillance of the mirror safety. These 

safety mechanisms can shut down the mirror at any time, either in seeing limited or AO 

observations, if they detect some unsafe condition in the mirror shape or forces. 

3.3.2.1. IDL issues 

 

The use of IDL code requires an IDL license to be always available. Usually this is implemented 

with an IDL license server, to which the IDL program connects to verify that license validity. If this 

license server is not working or otherwise unavailable, the IDL program will not start (or stop in a 

short time if it was running). Failure of the IDL license server will cause the Adaptive Secondary to 

shut down for safety, and will cause some malfunctions, but not complete shutdown, on the WFS 

software. 

 

3.3.3. WFS control processes 

 

The WFS system does not have a single main hardware control process like the AdSec, but is 

instead distributed into a number of processes, each of which takes care of controlling a single 

hardware device. The coordination is then done in the Wfs Arbitrator process (see next chapter). 

IDL is used sparingly, but similar license problems exist as in the AdSec software. 

3.3.4. Arbitrators 

 

Coordination at the subsystem level (wfs and adsec) is done by the Arbitrator processes. The 

Adaptive Secondary has its own Arbitrator, as the WFS has. The Arbitrator hides the actual 

hardware implementation, and instead makes available a few high-level commands which 

implement the more common AO operations. The Arbitrator GUIs are the main interface to the AO 

system during engineering operations. 

3.3.5. AOS 

 

The AO system is interfaced to the rest of the telescope through the AOS (AO Subsystem). This is a 

normal TCS subsystem running on the TCS server farm. The AOS exports the AO commands (a 

dozen or so) needed to perform seeing-limited and AO observations. The AOS GUI is the main 

interface to the AO system during normal observation. 

 



3.4. Engineering interface levels 

 

In order to setup, calibrate and debug the system, a number of engineering interfaces are provided. 

Each interface works at a certain level, and is independent of the others. Thus, they can override 

each other and care must be taken not to give conflicting commands. These conditions are noted 

where possible in this manual. 

 

As a general rule, an interface for a low-level process (for example the WFS hardware GUI) will 

override commands given from a higher-level interface (for example, one of the Arbitrators). 

 

It is therefore recommended to work with the highest available level. In addition, experience has 

shown that the complexity of the system is such that, when using the low-level GUIs, many details 

can be forgotten or overlooked even by experienced operators. Usage of the high-level interface 

make things easier, because most things are performed by scripts which will ensure that all details 

are properly taken into account. 

 

 

4. AOS GUI 
 

The AOS telescope subsystem makes available to the TCS and IIF all the AO commands needed for 

observation. These commands are intended to be sent from either the TCS command sequencer or 

the instrument observing block, but they can also be manually issued from the AOSGUI by the 

telescope operator if needed. 

 

4.1. Starting the GUI 

 

The AOSGUI can be started from any TCS machine. The syntax is: 

 
AOSGUI [side] 

 

where [side] is either “left” or “right”. In case the side parameter is omitted, the left side is assumed 

by default. 

 

The two purposes of this GUI are: 

 

 display AO status information 

 provide an interface to send commands to the AOS 

 

 

4.2. Status information display 

 

The main AOS GUI window is a status display with all main AO parameters. The window will 

become red if the AOS is not running properly.  

 



 
 

4.2.1. Connection to the AO system 

 

 



 

The connection status can have several values: 

 

 DISCONNECTED: the AOS is not able to talk with the AO system. This may happen 

because the Adaptive Secondary software is not running on adsecdx; 

 NO ARBITRATOR: the AOS is able to talk with the AO system, but the AO arbitrator is 

dwn or not answering. This usually means a problem on the network or on adsecdx;  

 STANDALONE: the AOS is connected to the AO system, but the latter is indicating that it 

is not ready to receive commands from the AOS. 

 OPERATING: the AOS is connected to the AO system and can send/receive commands. 

 

4.2.2. Overall AO system status 

 

 
 

The AO panel shows high-level parameters about the AO system: 

 

 Mode: can assume several values: 

o FIX-AO: seeing-limited (“fixed”) mode 

o TTM-AO: tip-tilt only correction 

o ACE-AO: full AO correction 

 WFS: shows which focal station has been selected 

 Status: shows the overall AO state machine status 

 Modes: shows how many modes are being corrected 

 Offload: shows the magnitude of the current tip, tilt and focus offload 

 Quality: … 

 



4.2.3. Wfs status and commands 

 
 

 

The WFS status window shows the main WFS parameters: 

 

 Field viewer: shows either: 

o The current technical viewer (ccd47) image 

o The technical viewer image used in the last source acquisition 

The compass right to the image shows the direction of the sky North 

 CCD: show the current ccd binning, frequency (frame rate) and illumination level in counts 

in the last 60 seconds. Binning may be zero if the ccd is off. 

 On/off: the two buttons ON and OFF control the power to the WFS unit. The ON button, in 

addition to simply turn on the power, will also perform a setup of the unit, thus taking some 

minutes to complete. 

 Status label: the status label can show either ON or OFF depending on the WFS power 

status. The colored bar at the bottom represents the software status and will be either green 

or red, the latter case signaling a problem in the wfs software. There is currently no way of 

detailing or correcting such a problem from the AOS GUI, and the engineering interface 

must be used instead (see chapters 3.2 and 10.1 for how to check for software health) 

 

4.2.4. Adaptive Secondary status 

 

 



The Adaptive Secondary panel shows the following status information: 

 

 Shape: name of the last loaded shape file (usually called a “flat”) 

 Main Power: status (ON or OFF) of the three-phase power to the unit. Also controls power 

to the hexapod 

 TSS Status: status of the wind protection system 

 Coils: status of the voice coils of the adaptive secondary. 

4.2.5. Adaptive Secondary on/off/set/rest 

 

The adaptive secondary status indicator, right of the button group, can have three values: 

 OFF: power to the unit is off 

 SAFE: unit is powered on and in safe condition (shell rested) 

 SET: unit is powered on and shell is set for observation. 

 

Four buttons control the power and shell status of the Adaptive Secondary: 

 On: turns on the power to the unit and goes to SAFE status. Takes about a minute to execute 

 Set: sets the shell and goes to SET status. Takes about two minutes to execute. 

 Rest: rests the shell from the set position and goes back to SAFE status. Takes a few 

seconds to execute 

 Off: turns off the power to the unit and goes to SAFE status. Takes a few seconds to 

execute. 

 

4.2.5.1. Safety locks 

 

In order to ensure the safety of the Adaptive Secondary, the shell can be set only if the following 

conditions are met: 

 Telescope elevation is 26 degrees or higher 

 Swing arm is deployed 

 Wind speed is under 8 m/s 

 

If any of these conditions is not satisfied, the Set command will be refused. If the shell was already 

set, it will be rested immediately. The safety feature is fast enough even in the worst case of the 

telescope slewing down to zero degrees. 

If for some reason any of these information do not reach the AO system (for example, the elevation 

value stops updating), it will be treated as an out-of-range condition and trigger the safety lock. 

 

The colored bar at the bottom of the status indicator represents the software status and will be either 

green or red, the latter case signaling a problem in the AdSec software. There is currently no way of 

detailing or correcting such a problem from the AOS GUI, and the engineering interface must be 

used instead (see chapters 3.2 and 10.1 for how to check for software health) 

 

4.2.6. Command execution reporting 

 



 
 

When any command is started, the name of the command is reported in the lower part of the GUI, 

along with the string “Running”. When the command completes correctly, the string “Complete” is 

reported. If there is any error, the error string is reported instead, and added to the message box 

below. Additional messages may appear in the message box during command execution, offloads, 

etc. 

4.3. Command GUI 

 

Clicking on the “Command GUI” button at the top of the AOS GUI opens the Command GUI sub-

window: 



 

4.3.1. AO commands 

 

Each AO command has its own command button. Many command have parameters which appear 

next to the corresponding button. 

The parameter input boxes serve both as input and as output: when a command is sent by the IIF, 

the corresponding parameters are written into the input boxes. Alternatively, the operator can input 

the parameter manually (or modify the ones written before automatically) and send the command 

manually. 

Each command has a status indicator next to it which can have three values: 

 Running: the command is currently executed 

 Success: the command has completed successfully 



 Failure: the command could not complete because of an error. Additional error information 

is available on the main AOS GUI window. 

 

Error conditions include the refusing of a command because it was not allowed in the current AO 

status.  

 

The progress bar at the bottom shows the command execution progress with respect to the 

command timeout. It is not possible at the moment to interrupt a command during execution. 

 

 

 

5. Engineering GUIs 
 

 

Unlike the AOSGUI, all the AO engineering GUIs must be started from the AO control computers 

(see chapter 3.1). 

 

5.1. Starting the Engineering GUIs 

 

A quick-start panel exists on both computers to start the relevant engineering interfaces. This panel 

is called: 

 

 wfseng on wfsdx 

 adsceng on adsecdx 

 

The panels can be started typing their name on any terminal (an X connection must be present). 

Each panel shows the interfaces available for the system, which can be started clicking the “Start” 

button next to their name. Unless otherwise noted, multiple copies of the interfaces can be started 

without limitations. 

 

                       
 

WFS and Adaptive Secondary quick-start panels. 

 

Alternatively, all interfaces can be started typing their name on a terminal. The correct program 

name is noted in the description of the interface, and is resumed here: 

 

 WfsControl (on wfsdx) starts the Wfs Arbitrator GUI 



 AdSecControl (on adsecdx) starts the AdSec Arbitrator GUI 

 AdOptControl (on adsecdx) starts the AO Arbitrator GUI 

 wfshw.py (on wfsdx) starts the Wfs Hardware GUI 

 BoardGui (on wfsdx) starts the board status display 

 AdSecMirGui (on adsecdx) starts the mirror status display 

 ccd_viewer.py (on wfsdx) starts the ccd viewer 

 vartool_AO.py    (on either computer) starts the RTDB interface (viewer/editor) 

 

These GUIs are described in detail in the following chapters. 

 

6. Wfs board status GUI 
 

The Wfs board GUI shows the status of the various WFS devices. 

 

6.1. Starting the GUI 

 

The WFS Board Status GUI can be started from the wfseng panel (see []), or from a terminal on 

wfsdx with the following command: 

 
BoardGui 

 



6.2. GUI description 

 
  

 

The GUI is a read-only display of the position of the various WFS devices. For each device, only 

the most relevant information is shown (e.g. filterwheel position, ccd binning and integration 

frequency, etc). The Cube icon at the top moves to show the actual physical position of the cube 

beam splitter, and has a red outline when it is in the reference source beam path. The rectangular 

display at the bottom is a map of the focal plane FoV available to the WFS stages, and the current 

position is shown with a green ‘X’. When the stages are moving, a red circle is also drawn to 

indicate the target position. On the lower left, a resume of telescope position and rotation is shown. 

 

7. Wfs Arbitrator GUI 
 



The WFS arbitrator GUI is used to send commands to the WFS Arbitrator, which provides high-

level commands to manage the WFS like startup/shutdown procedures, wfs configuration, dark 

frame acquisition, etc. Commands are implemented in the WFS state machine as described in 

CAN687f400. 

 

 
  

 



7.1. Starting the GUI 

 

The WFS  Arbitrator GUI can be started from the wfseng panel (see []), or from a terminal on 

wfsdx with the following command: 

 
WfsControl 

 

7.2. GUI description 

 

All GUI actions are implemented as one of the arbitrator commands described in CAN687f400. 

This has several consequences: 

 

 only one command can be executed at a time. To send another command, one must wait for 

the previous command completion. The GUI will prevent the operator from sending 

multiple commands, graying out all buttons while a command is executing 

 Not all commands are available at all times, depending on the state machine status. The GUI 

will either gray out buttons corresponding to unavailable commands, or display an error box 

if the command could not be received. 

 Commands parameters are validated before execution. If an out-of-range or otherwise 

invalid parameter is entered, a “Validation failed” error will be displayed. 

  

7.2.1. Status indicators 

 

 

 
 

At the top of the GUI, the following status information is shown: 

 

 Wfs Status: tells the operator in which state the WFS is at the moment, and therefore which 

commands are available. Also, in the GUI commands which are not available at the moment 

are grayed out. 

Note: if the Wfs Arbitrator program is not running, or not correctly responding, the Status 

will be “offline” and no commands will be executed. 

 Last executed commands: shows the name of the last command executed by the WFS 

arbitrator 

 Command execution status: shows whether a command is executing at the moment, or the 

result of the last command as described in []. When a command is executing, all GUI 

buttons are inactive. 

 

7.2.2. Startup/Shutdown commands 

 



 

 
 

Starting up the WFS requires turning on the various wfs devices in the correct order. This is 

managed by the WFS arbitrator command “Operate”, that takes two arguments: a list of devices to 

turn on (the “configuration”) and optionally a command file to setup each hardware device (the 

“board setup file”). The configuration files are pre-determined by the programmer and are not 

generally modifiable by the operator, while the setup files can be found in the WFS calibration 

directory as described in [] and may be modified as needed. For correct operation from the AOS, at 

least one setup file with the same name as the current instrument (e.g. “IRTC”) must be present. 

 

To startup the WFS: 

 select the configuration in the drop-down box 

 (optionally) select the setup file in the drow-down box, checking the “apply setup” checkbox 

 press the “Operate” button. 

 

Execution of the Operate command will often take several minutes. 

 

To turn off the WFS: 

 press the “Off” button 

 

Execution of the “Off” commands takes a few seconds. 

 

The startup sequence turns on and prepares for operation all devices in the configuration list. 

Movements are homed, CCDs are configured to default values, etc. 

 

7.2.3. AO parameters 

  

 
 

The “parameters” section is used to configure the main AO-relevant parameters: ccd frame rate, 

binning and tip-tilt modulation. These parameters are applied together. 

 

 enter the desired ccd frame rate in the “frame rate” input box. Frame rate is in Hz and can 

range from 100 to 1000. 

 enter the desired binning in the “binning” input box. Available binnings are 1,2,3 and 4. 

 enter the desired tip-tilt modulation in the “modulation” input box. This value will be the 

modulation radius in lambda/D. Modulation radius can range from 0 to 6 lambda/D. 

 Press the “Apply” button. 



 

The WfsArbitrator will apply the new parameters and, if the ccd configuration is changed, take a 

new dark frame using the filter wheel #1 as described in the later chapter []. Execution of the 

command will be either very short (less than 1 second, if the ccd parameters are unchanged), or will 

take 20-30 seconds. 

 

If the ccd or tip-tilt configuration is changed using the lower-level hardware GUI, the Wfs 

Arbitrator may not realize this. To avoid problems, after using the hardware GUI, always reapply a 

different value from the last command, to force the Wfs Arbitrator to reconfigure. 

 

Note about the modulation: the modulation parameter is converted to tip-tilt voltage commands 

using a lookup-table, found in [], based on the ccd frame rate. Not all modulation values are 

available at all ccd frame rates, for example at a frame rate of 1000 hz the maximum modulation 

radius is 3 lambda/D. In general, higher frame rates will prevent to use the bigger modulation 

settings, but a precise specification cannot be given since it depends on the details of the lookup 

table. The GUI will give an error to the user when an incorrect modulation is entered. 

 

During the setup, the ccd display may fluctuate wildly while the background is taken, and even stop 

for a minute or so if the ccd binning is changed. This is normal and the display is not to be 

considered valid until the command has completed. 

 

7.2.4. AO loop open/close/pause 

 

 

 
 

Four buttons manage the AO loop status. Because of the need of coordination between the two 

systems, the Close and Open buttons will send commands to both the WFS and Adaptive 

Secondary. 

 

 Close:  start sending slopes to the Adaptive Secondary. The secondary must have been 

previously configured with the correct input port, reconstruction matrix, etc. The button first 

sends a command to the Adaptive Secondary to configure it with the expected frame rate, 

and then closes the loop on the WFS. 

This button will also configure the Adaptive Secondary with the disturbance setting, as 

described later in [] 

 Pause:  suspends the loop stopping the slopes. The secondary mirror remains freezed in 

shape it had during the last loop iteration. A paused loop can be either resumed or stopped. 

 Resume: resumes a previously paused loop. Before resuming, the illumination level on the 

ccd39 is checked to verify that it similar to the one present when the loop was paused, and 

the resume command may be refused if the illumination level is too low. 

 Open: opens the loop stopping the flow of slopes to the Adaptive Secondary. After that, 

sends a command to the Adaptive Secondary to inform it that no more slopes are expected. 

If the “restore last shape” box is checked, the secondary mirror will re-apply the last shape it 

loaded before closing the loop. Otherwise, the mirror will remain in the position it had 

during the last loop iteration. 

 

 



7.2.5. Rotator tracking 

 

 
 

When enabled, the Wfs arbitrator will move the pupil rerotator to follow the telescope derotator and 

keep stable the pupil image on the ccd39. The tracking is applied once per second and has a total 

delay of 1-2 seconds, which gives an error  <0.1 degrees in all observing conditions up to 87° 

degrees of elevation. When first activated, or when the telescope is slewing, the tracking may take 

some time to reach the correct position. 

 

The pupil rerotator position is computed with the following formula: 

 

rerotPos = derotPos/2.0 * rerotSign + rerotOffset + trackingOffset 

 

The <derotPos> values comes from the AOS and is the DD derotator position. The <rerotSign> and 

<rerotOffset> values are read from the Wfs Arbitrator configuration file, using the keywords 

“RotatorSignBin1”, “RotatorOffsetBin1” and similar for the other binnings. If the Sign keyword is 

missing, a sign of -1 is assumed. 

The <trackingOffset> parameter is read each time from the RTDB (see []) and is intended to allow 

small corrections by the operator. 

 

This tracking is always activated by the AOS when starting an observation. 

 

7.2.6. Camera lens tracking 

 

When enabled, the Wfs arbitrator will measure the current pupil position using feedback from the 

“pupilcheck” process, and move the camera lens to keep the pupil centers in a predefined position. 

The status indicator has three values: 

 

 disabled: tracking loop is off and camera lens is not moving 

 enabled (not on target): tracking loop is on, but the pupils are off the predefined position, 

and the camera lens will be moved to recenter them; 

 enabled (on traget): tracking loop is on and the pupils are on the predefined position within 

0.1 pixels; the camera lens will be left where it is. 

 

Regardless of the “enabled” status, camera lens corrections are only applied during closed loop. 

This happens because, in open loop, the pupils are too aberrated to have an accurate measure of 

their position. A consequence of this is that, when the loop is closed, the indicator will temporarily 

go to “not on target”, because the pupil position is only computed every four seconds, and it will 

take one or two iterations before the actual pupil position is reflected in the target indicator. For this 

reason, the first camera lens loop iteration is skipped by the WfsArbitrator after closing the loop. 

 

This tracking is always activated by the AOS when closing a loop. 

 

7.2.7. ADC tracking 

 



The ADC tracking will follow the telescope elevation and field orientation moving the ADC wheels 

to have the correct atmospheric dispersion correction. Operation is similar to the Rotator tracking, 

except that instead of using a formula, the ADC position is computed using a lookup table found in 

[] based on the telescope elevation. 

 

 

7.2.8. Anti drift 

 

The antidrift loop tries to correct for temperature-dependent drifts of the ccd39 background levels. 

It will do so checking the current background level outside the pupils (in the ccd corners), and 

adjusting the current background frame so that the background-subtracted levels are zero. This is 

done independently on the four ccd quadrants. 

Since the BCU can lockup if the background frame is overwritten while the loop is closed, an 

antidrift correction will temporarily stop the ccd integration, overwrite the background frame, and 

restart the ccd integration. Because of the slow serial connection to the ccd, this will result in pause 

of about 0.1 seconds. The antidrift correction will be applied at a maximum rate of 1 Hz, and will 

slow down as the ccd temperature stabilizes. 

 

7.2.9. Dark frame and slopenull acquisition 

 

 
 

These buttons allow the operator to take a dark frame for either ccd, or a slope null frame. To take a 

dark frame, enter the number of frames to average in the input box next to the button. 

When the button is pressed, the filter wheel #1 is rotated to the “silver mirror” position (for the 

ccd39 background), or to the “empty” position (for the ccd47 background). For the other two 

buttons, no rotation occurs. After that, the ccd bias levels are equalized (see hardware GUI []) the 

specified number of frames are integrated, averaged, saved on disk with a tracking number, and sent 

to the correct BCU as the new background. The ccd display may fluctuate wildly during integration. 

The ccd39 background acquisition is a sub-procedure of the AO parameter apply command (see []). 

 

 

7.2.10. Disturbance 

 



 
 

Disturbance application is used to manage the digital disturbance feature of the adaptive secondary. 

The disturbance commands are loaded on the secondary BCUs, but their application is commanded 

by the WFS with a bitmask sent together with the slopes. Therefore, to change the disturbance 

setting, the system must be in closed loop. There are four possible settings: 

 Disabled: no disturbance is applied 

 Sync WFS: one disturbance frame is applied at each optical loop iterations 

 Only OVS: disturbance frames are only applied on oversampled frames (see []) 

 All frames: disturbance frames are applied on both optical loop and oversampled frames. 

 

The last setting allows the operator to have a disturbance “running” at a multiple of the optical loop 

speed, for example the optical loop can be at 200 Hz while the disturbance is applied at 800 Hz. 

Since oversampled frames are applied at a maximum rate of 890 Hz, this feature is only useful for 

an optical loop speed up to 445 Hz. Over this speed, the disturbance can only be synchronous with 

the AO loop. 

 

The disturbance setting can be changed at any time, but will only be applied when in closed loop. If 

changed in open loop, it will be applied at the first loop iteration. 

 

7.2.11. Offsets 

 

 
 

The WFS Arbitrator can execute XY and Z offsets moving the stages which support the optical 

board. All offsets are specified in millimeters on the focal plane (for the XY offset) or along the 

optical axis (Z). Offsets commands are relative to the current position. 

 

Offsets can be executed regardless of the loop status, but care must be taken not to exceed the 

adaptive secondary tilt or focus range if the loop is closed. By rule of thumb this means about 0.5 

millimeters in either X or Y, and 5 millimeters in Z. If the low-order offload is active, the adaptive 

secondary will offload these tilts to the hexapod in a few seconds, and the offset can be repeated 

(this coordination is done automatically by the AOArbitrator when long closed loop offsets are 

requested by the AOS). 

 



XYZ stages are normally braked. The brake is opened when an offset is requested, and closed again 

when it is completed. This can cause very small jitters (in the order or microns) in the actual stage 

position. Multiple offset commands are applied using the target position, and not the actual stage 

position, so that these errors are not accumulated. 

 

7.2.12. WFS displays 

 

 
 

From the WFS Arbitrator GUI, the two ccd viewers can be started pressing the “WFS Camera” and 

“Acquisition camera” buttons (for ccd39 and ccd47 respectively). The display program is the same 

for all ccds, with a few additional features for the ccd39 

 

 

7.2.13. CCD display 

 

 



 

 live indicator: the indicator can be either “Live” (green) or “Not live” (red). “Not live” only 

means that the display is not receiving frames, and may result from a variety of causes. For 

example, a “live off” display is normal while the ccd is changing binning. 

 image: the image is always shown at a rate of 20 Hz (or slower if the ccd is going slower), to 

avoid using excessive amount of CPU. This means that, at high AO loop frame rates, the 

image is heavily decimated. Saturated pixels are shown in red, to avoid confusion with 

pixels which are white due to lookup table effects. 

The ccd39 image is rotated 90° from the raw one to correct for ccd orientation. 

 Pupil positions (ccd39 only): radius, center X and Y position, and interpupil distance are 

shown for each pupil. This information is refreshed every few seconds. 

 Pixel value and position: when moving the mouse over the image, the pixel value of the 

pixel under the mouse, and its X and Y positions, are shown. The zero position is in the 

upper-left corner. 

 Intensity value (ccd39 only): shows the total intensity value, averaged over the four pupils, 

and rescaled to be in photons/subaperture/frame. This value is a running mean over the last 

100 displayed frames (5 seconds), so can be incorrect in case of rapid fluctuations or while 

the background frame is being acquired. This value is also incorrect the background frame is 

missing or outdated. 

 Slope rms plot: the plot is continously updated wi the current slope rms and shows the last 

20-30 seconds of data. 

 Stages on/off: this is a simple indicator to remind the operator that the stage motors are 

enabled, and may compromise the loop injecting electrical noise. This can be an issue when 

using the hardware GUI, but is automatically managed when using the AOS or Wfs 

arbitrator GUI. 

 

7.2.13.1. Controls 

 

 magnification slider:  changes the ccd display magnification 

 amplifier slider: changes the display lookup table. Higher (towards the right) slider settings 

cause the lookup table to shift towards low value pixels, while higher value pixels are 

saturated to white. 

 “show realtime pupils” checkbox: when checked, four red circles are drawn on the image to 

show the current pupil position and diameter as calculated by the “pupilcheck” process. 

 “show cloop pupils” checkbox: when checked, four red areas on the ccd are highlighted in 

red to show the pixels selected for the AO closed loop. The illuminated pupils must coincide 

with these areas 

 “show slopes” checkbox: when checked, the ccd image is replaced with a slope map which 

show the current slopes as calculated by the BCU. Two maps, for X and Y slopes, are 

shown. The pixel value indicator shows the value of the slopes under the mouse cursor 

position. 

 “Save frames” button: opens an interface to save frames from the ccd, described in []. 

 “Autocenter”/”Autofocus” buttons: start the automatic autocenter/focus scripts. These 

scripts use the current ccd image as feedback and move the XY or Z stage to center the light 

on the four pupils, or bring them into focus. Green arrows are drawn over the ccd image to 

show the stage movement. The scripts will exit when a correct position is reached, signaled 

by a small green circle display on the ccd image. The “Stop autocenter/focus” button can be 

used to stop the scripts manually. 

 

 



8. WFS Hardware GUI 
 

The WFS hardware GUI allows low-level control of the wfs devices. 

Warning: if the higher-level Arbitrators and AOS software are running, their command can conflict 

with those sent by the operator. Always use the higher possible GUI level, unless a specific reason 

exists. 

 

8.1. Starting the GUI 

 

The WFS Hardware GUI can be started from the wfseng interface or started from a terminal on 

wfsdx with the following command: 

 
wfshw.py 

 

8.2. GUI description 

 

 



 

The Hardware GUI has a list of devices on the left side. Clicking on a device name will display the 

corresponding window on the right side. At the bottom, three displays help identify which WFS is 

being operated on: 

 Unit: identifies the WFS by name (may be W1, W2, etc.) 

 Server: identifies the computer operating the WFS. Generally “localhost”, meaning that it is 

the same computer where the GUI is running, but can be different as the GUI can run 

somewhere else if properly configured. 

 Side: shows the telescope side (either “RIGHT” or “LEFT”). 

 

8.2.1. Power controller 

 

(pictured above) 

This panel shows all the on/off switches in the wfs system. The switches can be controlled by 

different hardware devices, and so some or all of them may be unreachable if the controlling device 

is powered off. The GUI shows this condition graying out the on/off buttons, and marking “offline” 

their status. 

A minimum set of devices is kept always on, as long as the input 110VAC line is active. These are: 

 

 the MiniMC fiber/copper Ethernet converter 

 the internal 5-port Ethernet switch 

 the left-box TS8 Ethernet/serial converter 

 the PIC-based power board 

 

Correspondingly, a few (on W#1) or most (on W#2) power switches are always available because 

they are located on the PIC-based power board. 

 

 A list of the switches and what they do follows: 

 

 Main power switch: controls the internal power supply for CCDs and BCUs. 

 Box fans: controls the fans on the electronics boxes covers.  

 Flowerpot: controls the flowerpot board, which in turn will allow control of the cube and 

reference lamp. 

 Little joe fans: controls the fans on the little joe ccd controllers. 

 Ccd39 and 47: controls the two little joe controllers. 

 Filter wheels: controls the two filterwheels. The wheels will move to the home position 

upon starting. 

 ADC: controls the two adc wheel motors. The wheels will move to the home position upon 

starting. 

 Bayside stages: on W#1, controls the 110 V power supply for the stages motor. The stages 

will not move and will need to be homed manually from their panel (see []) 

 Pupil rerotator: controls the pupil rerotator. The movement will move to the home position 

upon starting. 

 Cube stage and rotator: controls the two motor controlling the cube position and rotation. 

Both movements will move to the home position when starting. 

 Lamp: controls the reference lamp on (an additional intensity control is available separately) 

 

Four more switches control the “reset” and “program” lines of the two BCUs. The “reset” lines will 

hold the BCU in reset status for as long as they are on. The “program” lines are sampled by the 

BCU when starting (or when the “reset” line is turned down) to select one of two internal memory 



banks from which to load their program. These four switches are not normally needed for operation, 

unless a hardware problem on the BCU arises. 

 

8.2.2. CCD39 

 

 
 

The ccd39 panel shows the current ccd39 status and parameters, and allows the operator to change 

those parameters. 

 

8.2.2.1. Status 

  

Can have the following values: 

 

 NOCONNECTION: ccd controller is either turned off or not reacheable over the network 

 CONFIGURING: configuration parameters are being loaded through the serial line 

 READY: ccd controller is ready, but not integrating frames. 



 OPERATING: ccd is integrating frames 

 

8.2.2.2. Controls 

 

When first starting, only the binning drop-down box is available, because the ccd must be 

configured with one of the available binning. Selecting a binning from the drop-down box causes a 

configuration program to start, running in a separate xterm to display debug information. While this 

xterm is open, the hardware GUI is freezed. Binning configuration takes about 30 seconds. 

Once a binning is configured, the other parameters are set to some default value and can be adjusted 

by the operator. 

 

Parameters are set from the panel input boxes and then applied together when the “apply settings” 

button is pressed. 

 

 Frequency/repetitions: either a frequency (frame rate) or “repetitions” number can be 

entered. The little joe controller cannot integrate a specified frame rate, but has instead a 

delay for integration with a minimum time defined by the frame readout time, plus a delay 

computed as the number of “repetitions” multiplied by a base delay interval (variable for 

each readout speed). When a frequency value is entered, the control program will 

approximate it with the closest possible value as allowed by the current delay interval. 

Typical errors range from a fraction of a Hz at low speeds up to 1 or 2 Hz at high speeds 

(1000 hz or more). The maximum possible repetition number is 65535. 

SAFETY WARNING: the tip-tilt mirror is often hardware-locked to the ccd frame rate (see 

tip-tilt section). The ccd39 has the capability of going much faster than 1 Khz, thereby 

entering the tip-tilt resonating frequency range and possibly breaking it. For this reason, the 

GUI will refuse frequency settings over 600 Hz, and the Wfs Arbitrator GUI must be used 

(the Wfs Arbitrator will perform the necessary safety checks and refuse unsafe settings). 

However, the repetition value has no similar checks and using it, especially at binnings from 

2 up, is dangerous as it can result in frequencies of 3Khz or more. Always use the frequency 

setting and not the repetitions settings, unless you know what you are doing. 

 Black levels: the four (ccd39) or two (ccd47) quadrants each have their independent bias 

level, called “black level”. A higher black level corresponds to a lower pixel value for the 

same illumination level. A black level “unit” corresponds to 20 counts, or about 10 photons. 

 “Equalize quadrants” button: starts an automatic procedure to adjust the black levels so 

that every ccd quadrant has an average level of 200 counts (prior to background 

subtraction). The procedure takes a few seconds to converge. This button should be used 

when ambient light, articificial illumination and internal wfs lamp are off, otherwise an 

incorrect level will be reached. In addition, if the artificial illumination is flickering at 120 

Hz, the procedure will not converge since the ccd is seeing a variable amount of light, and it 

will giveup after a while. 

 Temperature display: three temperatures are given: “case” is a sensor inside the electronics 

case of the little joe controller. “Head” are two sensors on the ccd chip itself. The first 

sensor has a lower limit of 19°C, the other two of -40 °C. Hence, during winter observation 

they are often pegged to the lower limit. 

 Background: shows the current dark frame loaded on the BCU, and allows the operator to 

select another file and send it to the BCU. 

 “Start”/”Stop” button: stars and stops ccd integration. Integration is started by default after 

a binning is applied. 

 “Live view” button: starts the ccd viewer described in [] 

 “Save” button: starts an interface to save frames from the ccd, described in []. 

 



  

8.2.3. CCD47 

 

 

This window is identical to the one for the ccd39, except for a few differences: 

 

 the ccd47 has only 2 quadrants, so only 2 black levels are available 

 available binings are 1,2,4 and 16. 

 frame rates are much lower and the repetition setting changes little. Frame rate is essentially 

fixed by the chosen binning. 

 

8.2.4. Filter wheel #1 

 

 
 



The filterwheel panel shows the current filter wheel status and position. The position is not valid 

until the motor has been turned on and homed, and the GUI shows this graying out the position 

display. 

 

The movement is in “filters” unit (1.0 correspond to the angle between two filters) and can be either 

absolute or relative: 

 

 absolute movement is an offset from the home position. 

 Relative movement is an offset from the current position 

 

Position can be decimal, for example a movement to 0.5 will position the wheel halfway between 

two filters. 

 

The custom position buttons are dynamic and are built from the custom positions defined in the 

filter wheel's configuration file. Clicking on those buttons will immediately move the filter wheel to 

the custom position. When the filterwheel is on a position defined as custom position, the name will 

be displayed along the numeric position (as in the screenshot above). 

 

 “Abort movement” will stop any current movement of the filterwheel 

 “Start homing” will start the home position search procedure. This is automatically triggered 

when the filterwheel is powered up. 

 

 

8.2.5. Filter wheel #2 

 

 

This panel is functionally identical to the Filter wheel #1 panel. 

 

8.2.6. Status check 

 



 
 

This panel shows the status of all wfs devices. Status are either red or green. A green status means 

that both the software and the hardware for the specified devices is ready. In normal wfs operation, 

everything is green 

 

If the power on configuration was incomplete (as in this example, where the configuration was 

excluding the ccd47), it is normal that the excluded devices appear in red. 

 

8.2.7. Temperatures 

 



 
 

Shows all the temperature readings collected from various parts of the wfs. Update rates varies from 

once every few seconds to once every 30 seconds depending on the sensor. If a sensor does not 

answer for more than a minute, “N/A” (not available) is shown. Sensors can also be not available if 

the corresponding devices are off or otherwise unreachable. 

The lower section controls the over temperature protection system: the PIC-based control board will 

automatically shut the WFS off if any of the sensors goes over the specified thresholds. Two 

different thresholds are available: one for the sensors on the electronics, and one for the water 

intake and CCD temperature. 

 

8.2.8. Tip-tilt 

 



 
 

The tip-tilt panel shows both the current values and the input boxes for the requested values. All 

requested values are applied when the “Set” button is pressed (empty values default to zero). The 

tip-tilt is a three-axis device, but the control is done over two virtual axes that are remapped on the 

three real axis. 

 

 axis rotation: controls the orientation of the XY reference system 

 amplitude:  controls the overall modulation amplitude, specified in volts (0-10V) 

 Frequency: controls the modulation frequency. If the “Sync with ccd” checkbox is set, this 

value will be ignored (a zero is sent to the BCU), and the frequency will be synced to ccd 

frame rate using the tip-tilt fiber. 

Note: it is not possible to sync with the ccd frame rate when the ccd is turned off or 

otherwise unavailable. This condition is detected and the checkbox will be unavailable in 

this case. 

 X and Y offsets: change the modulation center, from -5 to +5V, with zero being the nominal 

range center. Either the input boxes or the sliders can be used. Slider changes are applied 

immediately without pressing the “Set” button. 

Note: When applying X and Y offsets, the tip-tilt controller may reduce the modulation 

amplitude so that the maximum voltage applied does not exceed 10 V, as sum of offset plus 



semi-amplitude. This is shown in the GUI as a reduction of the current amplitude with 

respect to the requested value. 

 

 

8.2.9. Tip-tilt low level 

 

 
 

This panel allows individual control of the three tip-tilt axes. For each axis, amplitude, offset and 

phase can be set independently, while the frequency is locked to be the same. The nominal offset 

center here is 5 volts, and ranges from 0 to 10V. 

 

 

8.2.10. Pupil rerotator 

 



 
 

This panel commands the pupil rerotator and is functionally similar to the one of the filter wheel #1, 

except that the movement unit is in degrees. Also, the pupil rerotator has a limit switch that will 

prevent movement lower than zero degrees, or any other backward movement crossing a 360° 

threshold. So, once the position has advanced over 360°, it will not go lower than that until the 

movement is power cycled. 

 

When using the AOS or WfsArbitrator, this condition is automatically avoided. Furthermore, the 

rotator tracking is on at virtually all times, and it will continuously send commands, rendering this 

panel basically useless until the tracking is stopped. 

 

8.2.11. Cube stage 

 



 
 

This panel commands the cube stage, which is a linear movement with two limit switches. Units is 

in millimeters. Apart from this, it is functionally identical to the filter wheel #1 panel. 

 

 

8.2.12. Cube rotator 

 



 
 

This panel commands the cube rotator, which is a rotary movement without limitations on 

movement. Unit is in degrees and precision of movement is on the order of 0.01 degrees. The panel 

is functionally identical to the filter wheel #1 panel. 

 

 

8.2.13. Bayside stages 

  



 
 

8.2.13.1. Displays 

 

The bayside stage panel shows the status of each of the three XYZ stages. For each stage a status is 

reported: 

 

 NOCONNECTION: stage is off or otherwise unreachable 

 CONNECTED: stage is reachable, connection in progress 

 OFF: stage is ready, motor disabled, brake set 

 OPERATING: stage is moving and/or actively mantaining a position 

 

Position display: the current position is shown, as an offset from the homing position. If the homing 

procedure has not been performed, the position where the stage was when it was turned on is 

assumed as zero. The stage positions use the following reference system: 

 

[diagram] 

 

Note that the X stage has a home position towards the left movement limit, and thus valid positions 

range from 0 down to -120 mm. Y and Z stages instead move from the home position up to about 

+88 and +70 mm respectively. 

 

Current display: the current adsorbed by the motor is shown in Ampere. An adsorption of 1 or 2 

amperes is normal. If the display is stuck at 4 amperes, it means that some mechanical obstruction is 

present and the current limiter is in action. 

 



8.2.13.2. Controls 

 

For each stage, the following checkboxes are available: 

 

 “enable stage” this must be checked to allow the stage to move. Unchecking this checkbox 

will cause the stage to stop immediately and brake in the current position 

 “software limit” enforces the sofware movement limits, defined in the stage configuration 

files. 

 “limit switches” enables the electrical limit switches that prevent the stages from reaching 

the mechanical movement limits. This is usually always enabled. 

 “control always active” avoids braking the stage once a movement is done, allowing the 

motor to actively keep the position. If the checkbox is activated before a movement, the 

setting will be applied on the next movement. If unchecked while the motor is maintaining 

a position, it will cause the stage to set the brake and stop there. 

 

 

Other controls: 

 

“Move” button: the move button will move the stage to the position specified in the main 

inputbox. Only absolute positioning (offset from the home position) is available. 

 

“Start homing”: starts the homing procedure. X stage homes towards the left limit (positive 

coordinates), while Y and Z stages home toward the lower and backward limit (negative 

coordinates). 

 

 

8.2.14. Source lamp 

 

 
 

This panel allows the operator to change the reference lamp intensity moving the slider. This is in 

addition to the lamp on/off control described in []. The actual lamp intensity is displayed as a 

percentage and will take a few seconds to follow the slider due to delays in the PIC-based flowerpot 

controller. 

Note: the lamp behavior is highly non-linear. At the lowest settings, the lamp is virtually off, then 

ramps up quickly. Over 50% or so the lamp increases luminosity only marginally. 

 

8.2.15. Camera lens 

 



 
 

This panel controls the two axis of the cameralens. The cameralens outputs of the BCU are slaved 

to the ones for the tip-tilt: if the tip-tilt has not been configured, the outputs are not enabled and the 

cameralens is in the default rest position. Before using the cameralens, the operator must first set the 

tip-tilt, even giving zero as amplitude and offset. 

 

Once the outputs are active, the two sliders control the X and Y camera lens position. The current 

position is shown, and the position can also be changed writing the new values in the two input 

boxes and pressing Enter. This action will set both axes at the same time. 

 

 

8.2.16. ADC wheels #1 and #2 

 



 
 

These two panels control the two ADC prism wheels. The unit of movement is in degrees. Apart 

from this, they are functionally identical to the filter wheel #1 panel. 

When using the Wfs Arbitrator ADC tracking, the ADC position is continuously updated and this 

panel cannot be used. 

 

8.2.17. ADC high-level 

 



 
 

This panel allows the control of the ADC as a function of two high-level parameters: dispersion 

angle and axis orientation. There is a direct mapping of these two parameters to the ADC wheels 

position. 

 

When either of the Set buttons is pressed, both values are sent to the ADC controllers. 

When using the Wfs Arbitrator ADC tracking, the ADC position is continously updated and this 

panel cannot be used. 

 

8.2.18. Board setup 

 



 
 

The operator can save the current board configuration using this panel to save a “board setup” file. 

A board setup is a text file containing commands to set the wfs movements positions. To save the 

current configuration, enter a descriptive name in the top input box and press “save”. A text file will 

be generated and saved in a predefined directory (see []), and shown in the list with the date on 

which it was saved. 

Clicking on a filename on the list will display its contents in the right box for inspection. To load a 

board setup file, select it on the list and press the “Restore” button. An xterm will appear where the 

script will execute. 

Warning: if some devices are off, they will not respond to commands, and the xterm will wait for 

their response with a timeout which may be quite long. It is safe to simply close the xterm, because 

all commands are sent in less than one second, and the rest is only waiting for the devices to report 

their status. 

 

The following parameters are saved/restored: 

 

 filter wheels #1 and #2 positions 

 cube stage and rotator positions 



 X, Y and Z stages positions 

 Camera lens X and Y positions 

 Tip tilt modulation amplitude, frequency and offsets 

 ADC wheels #1 and #2 positions 

 

 

 

8.2.19. System tests 

 

[screenshot] 

 

This panel contains shortcut buttons to start various system tests scripts. Their output, when 

available, is shown in the box below the buttons. The output text can be copied and pasted. The 

available scripts are: 

 

 ccd39 RON test: starts the ccd39 RON (ReadOut Noise) test. It will cycle the ccd between 

the four available readout speeds, and report the results in the box below. 

  

 

 

8.2.20. Quick selection 

 

[screenshot] 

 

This panel contains a list of the available calibration files for the BCU (background frames and 

slopenull frames), displays the currently selected file and allows the operator to select a different 

file and send it to the BCU. Loading the file is immediate whether in open or closed loop. While 

operational, use of the WfsArbitrator GUI for the background is recommended. 

 

 

9. AdSec operation 

9.1. Safety Remarks 

The system is particularly sensitive to condensation problems: condensation inside the gap between 

the Reference Body and the Thin Shell not only does not allow operating the system, but also 

requires long time to be fixed. 

For this reason the system is maintained fully powered up also during day and night time. If a 

switch off of the system is mandatory, the dew-point level has to be taken carefully in account. 

Moreover, if the wind speed is over 8 [m/s], for thin shell safety reasons, only the system can be 

powered off but not the AO software framework. 

In order for the mirror to work for observation the telescope elevation has to be greater than 25 

degrees, the swing arm has to be deployed and the wind speed at secondary level has to be below 

22 m/s. All these info has to be available from the TCS in order to permit to the Adaptive secondary 

to properly working. 



For safety reasons, if the wind speed becomes unavailable, the TSS safety extra current is 

enabled.   

In the same way, if the elevation or the swing arm status becomes unavailable, the shell is rest 

against the reference body and any operation will be stopped. 

Please take care about the AOS process: since the AOS is routing the information from the TCS to 

the AOSupervisor , any shutdown  of the AOS will cause the TSS to be enabled and the shell to 

be rest. 

In the same way a mis-functioning of the TCS processes in charge of collecting the wind speed 

data, the elevation and the swing arm status will cause an AOSupervisor reaction as described 

above. 

9.2. Quick start with AOS GUI (from BP4 built ahead)  

Open the AOSGUI. If the GUI is RED, the upper right label is not operating or if the Adaptive 

Secondary fields marked not looks like the ones here reported please refer to the chapter 9.5  



 
Figure:  9-1 AOS GUI 

Press the SET button and wait. After a couple of minutes, if everything is ok, in the Adaptive 

Secondary frame, the label should change between SAFE to SET. 



 

At the end of the observation night, please put the mirror in the SAFE position BEFORE going 

horizon to close the dome pressing REST. If you REALLY want to power the system off you can 

press, after the REST, the OFF button. (About that read carefully the chapter 9.1). 

In case of mirror FAILURE please use the engineering GUI as shown below. 

  



 

9.3. Quick start with Engineering GUI 

Start the adsceng panel (See chapter 5.1): 

 
Figure:  9-2 Adsec Engineering GUI panel 

Press for starting the AdSec Arbitrator GUI.  

Note: the AdSec Arbitrator GUI can also be started from a terminal with this command: 
 

AdSecControl  

Once the GUI opens, check the fields circled in RED in the following screenshot. 

If the fields marked in RED are not showing values OR have a RED background please check 

that the AOS is up and running. If that values are not correctly updated the Adaptive Secondary 

cannot be operated. Check the “AdSec Arbitrator Status” label (circled in orange in the following 

screenshot). It must show a Ready state. If not, refer to chapter 7 to set the proper arbitrator status. 

To set the shell, press the “SetFlatAo” button (on the left column, circled in orange in the following 

screenshot). The command will take about 2 minutes to execute. At the end, the status will be 

“AOSet”. 

At this point, the secondary mirror is flat and ready for seeing limited operation and no further 

action is necessary. 



 
Figure:  9-3 Adsec Arbitrator GUI 

 



Once the shell is set, you can apply low order Zernike correction. Write a value (um wavefront), 

press Enter and once the field is updated press Apply.  

At the end of the observation, put the thin shell in safe position with pressing the Rest button. 

The Adsec Arbitrator status will change from AOSet to Ready. 

9.4. Status indicators 

 

At the top of the AdSec Control GUI, the following status information is shown: 

 

 AdSec Arbitrator Status: tells the operator in which state the AdSec is at the moment, and 

therefore which commands are available. Also, in the GUI commands that are not available 

at the moment are grayed out. 

Note: if the AdSec Arbitrator program is not running, or not correctly responding, the Status 

will be “offline” and no commands will be executed. 

 Last executed commands: shows the name of the last command executed by the AdSec 

Arbitrator 

 Command execution status: shows whether a command is executing at the moment, or the 

result of the last command. When a command is executing, all GUI buttons are inactive. 

 Focal station: shows the currently selected focal station (which may be “None” if no focal 

stations have been selected since the last adsec startup). The selected focal station is the only 

one allowed to send slopes to the secondary mirror. 

 Lab mode: the red label “lab mode enabled” is shown when the arbitrator is in the so-called 

“lab mode”. In this mode, some safety features are disabled. Intentionally, it is not possible 

to enable the lab mode using the GUI. 

 Telescope data (wind, elevation, swing arm status). 

 Safe skip indicator. Becomed RED when the AO loop is skipping more than 10% of the 

frames. 

 

 

 

9.5. Quick recovery from Failure 

The Adaptive Secondary arbitrator can reach a Failure state in case of some hardware or software 

fault occurred. The software will try to recover automatically from the failure and go back to 

Ready state. In case this is not working, the operator has to press the “RecoverFail” button on the 

AdSec Arbitrator GUI to recover the system. 

 

The fail recovery procedure takes about one minute to complete. 

 

In case the Recover Fail procedure does not work, try first to restart the software from 

scratch. If it is still impossible to start the mirror, you will need technical assistance from Arcetri. 



 
 

9.6. Adaptive Secondary startup and shutdown 

9.6.1. With Engineering GUIs 

Log on the adsecdx pc and start the engineering GUI panel and the Adsec Arbitrator GUI (see 

chapter 9.3). The top of AdSec arbitrator GUI should look like the following one. In particular the 

Adsec Arbitrator Status should be PowerOFF and the On command button should be enabled. 

 

 

Now press the On button and wait until the system is switched on and the Adsec Arbitrator 

Status changes from PowerOff to PowerOn. After that proceed pushing the LoadProgram button. 

 

At this point the Adsec Arbitrator Status should change from PowerOn to Ready. Now the mirror 

is ready to operate as shown in chapter 9.2. When you end the observation this is the right status 

in which put the Adaptive Secondary.  



 

If you need to PowerOff the Adaptive Secondary, please check the Safety Remarks (9.1). After 

that, you can simply power off the system pushing the PowerOff button. 

When the Adsec Arbitrator Status changes to PowerOff, you can shutdown also the AO software 

framework as described in 3.2. 

 

9.7. More on GUIs 

In the Adsec engineering GUI panel you can select two more useful GUIs that allow to you to have 

a more detailed look to the Adaptive Secondary mirror  status. 

9.7.1. AdSec Mirror GUI 

This GUI can be used if the Adsec Arbitrator status is Ready, AOSet or AORunning. It shows in a 

quick look the capacitive sensors readings, the force applied from each voice coil and the command 

sent by the Slope Computer. 

This GUI can be started from the engineering panel, or from a terminal with the command: 
 

AdSecMir_GUI 



 

9.7.2. AdSec Housekeeper GUI 

This GUI shows all slow diagnostic data of the adaptive secondary, essentially temperatures of 

various component of the Adaptive Secondary. 

 

This GUI can be started from the engineering panel, or from a terminal with the command: 

 
Housekeeper_gui 

For the boolean values, dark or green means 0, white or red means 1. The STATUS FLAG on the 

right of each variable with a range can be GREEN (nothing to report), YELLOW (variable with 

warning values) or RED (variable out of the alarm thresholds). For the thresholds refers to 641a017. 

NB: The ADAM panel STATUS FLAG are not properly working 

 

 



 
 

 

A. Stop: start/stop acquisition data from Housekeeper process 

B. Last update timestamp 

C. Help: help (if any  ) 

D. Exit: close Housekeeper GUI 

 1. System summary Panel 

 2. Crate BCU Panel (1) 

 3. Crate BCU Panel (2) 

 4. Crate DSP Panel 

 5. Adam Panel 

 6. Warning Panel 

 7. Alarm Panel 

 8. Panel values summary plot 

 9. Panel values summary plot 

 10. Housekeeper frame rate 

 11. Unused 

 12. Hub temperature 

 13. Coldplate temperature 

 14. Reference Body temperature (see map) 

 15. Inner structure ASM temperature (see map) 

 16. Power Backplane temperature 

http://wiki.lbto.org/pub/AdaptiveOptics/AdsecGuis/Temp_Hum_mapping_v01.doc
http://wiki.lbto.org/pub/AdaptiveOptics/AdsecGuis/Temp_Hum_mapping_v01.doc


 17. External Temperature Probe 

 18. Fluxmeter value 

 19. Water temperature main inlet probe 

 20. Water temperature main outlet probe 

 21. Water temperature coldplate inlet probe 

 22. Water temperature coldplate outlet probe 

 23. External Humidity percentage 

 24. Dewpoint value 

 25. Dewpoint distance from lowest temperature 

 26. Separe plot: if available, a running plot can be requested for the corresponding variable 

 27. Passing the mouse on a value, here you will se the thresolds on minimum values 

 28. number of variables in warning 

 29. number of variables in alarm 

 30. Passing the mouse on a value, here you will se the thresolds on maximun values 

 

 
 

 

 31. Crate identification number (0 to 5, Switch/Slave BCU 0) 

 32. Board identification inside crate (FF for BCUs, FC for siggen, F8 accelerometer) 

 33. NIOS identification number 

 34. Logics identification number 

 35. IP address of the BCU 



 36. Diagnostics frame counter 

 37. Board serial number 

 38. Power backplane serial number 

 39. Not relevant here. For details see 641a006 

 40. Not relevant here. For details see 641a006 

 41. Not relevant here. For details see 641a006 

 42. to 47. Analogic sensors. For details see map 

 48. to 57.Analogic parameters of the unit 

 58. Analogic sensors plot 

 59. BCU temperatures plot 

 60. Signal generator/Accelerometer board temperature plot 

 61. Crate selection 

 62. BCU FPGA temperature reading 

 63. BCU Board temperature reading 

 64. Signal generator/Accelerometer board FPGA temperature reading 

 65. Signal generator/Accelerometer board temperature reading 

 66. Signal generator/Accelerometer board DSP temperature (if any) 

 

 
 

 

 67.to 76. Reset status signals (see 641a017) 

 77. Driver enable boolean 

http://wiki.lbto.org/pub/AdaptiveOptics/AdsecGuis/Temp_Hum_mapping_v01.doc


 78. Master crate boolean 

 79. Fault line boolean 

 80. Not relevant here.(for details see 641a017) 

 81. Not relevant here.(for details see 641a017) 

 82. Not relevant here.(for details see 641a017) 

 83. Not relevant here.(for details see 641a017) 

 84. Not relevant here.(for details see 641a017) 

 85. Overcurrent protecton boolean (for details see 641a018) 

 86. Not relevant here.(for details see 641a017) 

 87. to 90. Global current absorption on master crate plot and values (for details see 641a017) 

 91. Overcurrent protection thresholding plot 

 92. Crate selection 

 93. Signal generator/Accelerometer ID 

 94. Signal generator/Accelerometer NIOS ID 

 95. Signal generator/Accelerometer Logics ID 

 96. Signal generator/Accelerometer Serial Number 

 97. Single Crate absolute value current threshold 

 98. Not relevant here.(for details see 641a017) 

 99. System total positive current (valid only for crate master) 

 100. System total negative current (valid only for crate master) 

 

 
 



 101. DSP Board ID 

 102. DSP Board NIOS ID 

 103. DSP Boad Logics ID 

 104. DSP Board Serial number 

 105. to 108. Not relevant for here. 

 109. to 116. Coil current SPI reading 

 117. to 123. Not relevant here.(for details see 641a017) 

 124. Watchdog enable boolean 

 125. DSP 0 Watchdog expiration (for details see 641a018) 

 126. DSP 1 Watchdog expiration (for details see 641a018) 

 127. DSP board FPGA temperature 

 128. DSP board temperature 

 129. DSP board DSPs temperature 

 130. DSP board driver temperature 

 131. Crate selection 

 132. Board selection 

 133. Driver enable status for each actuator 

 134. to 139. DAC and ADC calibration paramenters (see 641a015) 

 140. Actuator selection 

 

 

 141. Main power (for details see 641a018) 

 142. Ethernet watchdog expiration (for details see 641a018) 



 143. TSS Status (for details see 641a018) 

 144. Driver Enable (for details see 641a018) 

 145. Not relevant here (for details see 641a018) 

 146. Firmware configuration selection (for details see 641a018) 

 147. Not relevant here (for details see 641a018) 

 148. Failure on TSS power supply number 0 

 149. Failure on TSS power supply number 1 

 150. Not relevant here (for details see 641a018) 

 151. System general fault signal 

 152. Failure on power supply number 0 

 153. Failure on power supply number 1 

 154. Failure on power supply number 2 

9.8. Housekeeper configuration files 

All the Housekeeper variables limits are listed in the configuration file; housekeeper.param. The 

file is in the directory: $ADOPT_ROOT/conf/adsec/current/processConf/housekeeper. In the 

Housekeeper GUI, the option Crate DSP shows the temperature values of the 4 sensors for;Stratix, 

Power, DSPs and Drivers for every crate the boards For every crate (0 to 5) we have 14 boards (0 to 

13). 

Example: If a temperature sensor for one variable is giving bad readings, eg: DSPDRIVER-0008 

=10e4 reported in the housekeeper.R/L.log, this sensor probably is bad functioning and to have the 

system to operate has to be disable it. The 8 means crate 0 board 8. To do so, we can edit the file 

housekeeper.param and for the DSPDRVERTEMP variable we just do: 

# FamilyName From To AlarmMin WarnMin WarnMax AlarmMax RunningMeanLen CAF 

Enabled Slow 

DSPDRIVERTEMP 8 8 -50 -15 inf inf 5 1 dis fast 

From 8 to 8 is to specify the bad temperature sensor and the dis option means disabled 

 

10. Low-level GUIs 

10.1. System processes GUI 

 

The System processes GUI lists all the necessary processes for the subsystem currently configured 

(either the Adaptive Secondary or the WFS), and shows whether each process is running or not, or 

if it is being initialized. It also provides buttons to start and stop each process, and to visualize their 

log file. 

 

http://wiki.lbto.org/bin/edit/AdaptiveOptics/FamilyName?topicparent=AdaptiveOptics.AdsecGuis;nowysiwyg=0
http://wiki.lbto.org/bin/edit/AdaptiveOptics/AlarmMin?topicparent=AdaptiveOptics.AdsecGuis;nowysiwyg=0
http://wiki.lbto.org/bin/edit/AdaptiveOptics/WarnMin?topicparent=AdaptiveOptics.AdsecGuis;nowysiwyg=0
http://wiki.lbto.org/bin/edit/AdaptiveOptics/WarnMax?topicparent=AdaptiveOptics.AdsecGuis;nowysiwyg=0
http://wiki.lbto.org/bin/edit/AdaptiveOptics/AlarmMax?topicparent=AdaptiveOptics.AdsecGuis;nowysiwyg=0
http://wiki.lbto.org/bin/edit/AdaptiveOptics/RunningMeanLen?topicparent=AdaptiveOptics.AdsecGuis;nowysiwyg=0


 
 

The status indicator of each process can have three values: 

 

 Down (red): the process is not running or not connected to the MsgD 

 Init (yellow): the process is running, but not yet correctly initialized 

 Up (green): the process is running correctly 

 

The initialization fase is generally very short, except for processes which must wait for some 

particular condition (for example, the adamHousekeeper will remain in “init” state until the 

secondary mirror unit is powered on). In normal operating conditions, all lights should be green. 

 

The “log” button will open a window where the log file of the specified process is shown, with 

color-coded lines for normal logs, error logs, etc. The window does not show the entire log file, but 

only shows the last part, and follows the changes as they are written. If the process is restarted, the 

log will continue in the same window. The log window is only a viewer and can be closed at any 

time with no harm. 

 

10.2. Variable inspector tool 

 

 



 
 

The variable inspector tool is a viewer/editor of the central variable repository maintained by the  

RTDB. A different variable repository is maintained on each AO computer, even if some 

information of common interest is replicated.  

10.3. Text-based tools 

10.3.1. Consumer 

 
 "consumer" connects to the shared memory buffer that contains the realtime telemetry, and it has options to dump 
the data on disk, how many frames to save, etc, like this: 
 
[sxwunit@lbti-sxwfs]$ ./consumer -w telemetry.dat -c 100000 1 masterdiagnostic.L:OPTLOOPBUF 
 
-w <filename> is the output file 
-c <count> is how many telemetry frames to store. If omitted, runs until interrupted with Ctrl-C. 
"1" is just a stupid argument to have a number in the clientname in case multiple consumers are connected 
"masterdiagnostic.L:OPTLOOPBUF" is the name of the shared memory buffer 
 
The number and buffer name must be the last two arguments 

 

10.3.2. Log files 

 

All AO processes, except for graphical interfaces, write information on what they are doing in a log 

file. Log files are ASCII text and can be opened with any text viewer (see also the logviewer tool, 

chapter Error! Reference source not found.). Care must be taken not to modify the log file if they 

are opened with an editor such as Emacs or Vi. 

 

The log file has a standardized path and filename: 

 

$ADOPT_LOG/<processname>.<side>.log 

 

Where <processname> is the name of the process, and <side> is the telescope side is it running on. 

The MsgD has a special name: 



 

$ADOPT_LOG/M_<msgd name>.log 

 

 

10.3.2.1. Log file archiving 

 

When a process exits, its log file is “archived”, that is, is renamed to make room for the new log file 

which will be created when the process will restart. The archived filename has the format: 

$ADOPT_LOG/<processname>.<side>.<timestamp>.log 

 

Where <timestamp> is a timestamp in Unix format, recording the time when the file was archived. 

Log files are automatically archived and re-openened when they reach a predefined length (around 

200MB). Log files are also archived when a process, upon starting, finds out that the log file of the 

previous instance was not correctly archived. The process will then archive the old log file before 

opening a new one. 

 

Graphical and text interfaces, which can run in multiple copies at the same time, do not write a log 

file. 

10.3.3. Telemetry files 

 

In addition to log files, a few processes also write telemetry files, which are a special case of log 

files containing mostly numerical data. They are still in ASCII format and have the following 

naming scheme: 

 

$ADOPT_LOG/<processname>.<side>_TELEMETRY.tel 

 

Telemetry files are archived in a similar manner as the log files. 

 

11. Common tasks 
 

11.1. System preparation 

11.1.1. Using the  AOSGUI 

 

 Check on the AOSGUI that the software status is OK (AOS connected, and green light on 

the AdSec and Wfs software status). See chapter 4.2.1. 

 Check if the hardware subsystems (again either the AdSec or both the AdSec and the WFS) 

are turned on. They will be off if the software was just started. Turn on the needed 

subsystems. See chapters 4.2.3, 4.2.3 and 4.3.1. 

 Set the Adaptive Secondary shell (see chapter 4.3.1). 

Note: telescope conditions (like elevation < 25 degrees) may prevent the shell from setting 

up, or will cause it to rest it afterwards (see chapter Error! Reference source not found.). 

The shell will need to be set again after these conditions are resolved. 

 

11.1.2. Using the Arbitrator GUIs 

 



In case the AOS GUI is not available, or the AOS is not working properly, it is still possible to 

setup the system from the Arbitrator GUIs. 

 

 Check that the software on adsecdx is up and running properly (see chapter 3.2) 

 Bring up the adsceng panel on the adsecdx computer 

 Start the AdSec Arbitrator GUI 

 Setup the adaptive secondary using the command buttons in the left column. The complete 

sequence is: 

o “On”   (goes to status Operating) 

o “LoadProgram”  (goes to status Ready, corresponding to the SAFE label on the 

AOS) 

o “SetFlatAo” (goes to status AOSet, corresponding to the SET label on the AOS). 

 

If the adaptive secondary is already halfway through this sequence, only the remaining steps need to 

be performed. Most of the time, the secondary should be in Ready state (SAFE label on the AOS). 

 

To setup the WFS: 

 

 Check that the software on wfsdx is up and running properly (see chapter 3.2). 

 Bring up the wfseng panel on the wfsdx computer 

 Start the WFS Arbitrator GUI 

 Select the configuration “complete with ccd 47” and press the Operate button. The setup 

operation will take a few minutes to complete. 

 

When the WFS Arbitrator GUI reports that the WFS is in state “Operating”, the setup is done and 

observation can proceed. 

11.2. System shutdown after observation 

 

11.2.1. Using the AOSGUI 

 

 Rest the Adaptive Secondary mirror shell (see chapter 4.3.1). Do not turn off the secondary 

mirror, leave it in the status marked SAFE on the AOS GUI. 

 Turn off the WFS (if it was turned on initially)  

11.2.2. Using the Arbitrator GUIs 

 

 From the AdSec Arbitrator GUI on adsecdx, press the “Rest” button and verify that it goes 

to “Ready” state. 

 From the WFS Arbitrator GUI on wfsdx, press the “Off” button and verify that it goes to 

“Off” state. 

11.3. Seeing limited observation 

 

11.4. AO observation sequence 

 

AO observations are intended to be performed automatically by the instrument through the IIF. It is 

possible for the AO operator to intervene to repeat or modify a command using the AOS Command 



GUI, where the original command parameters are displayed. In case of a command failure, or if a 

command must be repeated, the operator can modify the parameters on the AOS Command GUI 

and repeat the command. 

 

This chapter gives a resume of the typical AO sequence, an overview of what happens during each 

command, and what is possible for the operator do to in each case. 

 

11.4.1. PresetAO 

 

An AO observation starts with a PresetAO command, which tells the AO system the main 

parameters of the following observation: which instrument and focal station will be used, and the 

reference star magnitude and position. The command is received by the AOS and forwarded to the 

lower-level arbitrators, where the following parameter checks are done: 

 

By the AdSec Arbitrator: 

 focal station name is among the ones defined for the Switch BCU input ports 

 

By the Wfs Arbitrator: 

 Star magnitude is within the limits of the AO parameters table 

 Star position is within the AO field-of-view of the wfs stages 

 A board setup file with the same name of the instrument is present 

 

The AO parameters table and AO field-of-view are defined in two different WFS calibration files 

(see []). The board setup file will be searched in the board setup directory (see []). 

 

If any of the checks fails, the command will report a “Validation failed” or “Retry” error. In this 

case, the command must be repeated with valid parameters before AO observations can go ahead.  

 

When the parameters are successfully validated, the AdSec and WFS are configured, ccd darks are 

taken and the board setup file is applied. Tracking loops (rerotator, adc) are turned on. If the WFS 

CCD displays are active, they may stop for a while during the CCD reconfiguration. 

 

A PresetAO command can be repeated any number of times without harm. Since it may take a 

certain amount of time (up to a couple of minutes if everything must be reconfigured), the PresetAO 

can be sent while the telescope is slewing to speed up AO operations. 

11.4.1.1. Error conditions and recovery 

 Focal station name is not recognized. Solution: repeat the command with a recognized focal 

station name 

 Instrument name is not recognized. Solution: repeat the command with a recognized 

instrument name 

 Star magnitude is too faint or too bright: Solution: repeat the command with a star 

magnitude within accepted bounds 

 Star position outside FoV. Solution: repeat the command with a star position inside the 

accepted FoV 

 Any other problem is a symptom of hardware failure. See chapter []. 

 

11.4.2. AcquireRefAO 

 



The AcquireRefAO tells the AO system to acquire the reference star and configure the system for 

close loop operations. It has no parameters since everything was specified by the previous PresetAO 

command. When the AcquireRefAO command is received by the AOS, the following sequence 

happens: 

 A sky image is taken wih the ccd47 and the position of the reference star is measured 

 WFS stages are moved to bring the reference star on the target position 

 The magnitude of the star is measured on the ccd39 and compared with the one given by the 

system during the PresetAO. If there is a difference, the system is reconfigured (basically 

repeating a PresetAO command) for the new magnitude. 

 The AO loop is temporarily closed with a special set of parameters to center the camera 

lens. 

 Once the camera lens is centered, the temporary AO loop is opened and the system is 

configured with the final parameters. 

 

A number of things may prevent the command from completing successfully. The following section 

details the most common problems encountered. 

 

Note: the fact that a temporary AO loop is closed during this command means that telescope 

guiding and active optics must be stopped during command execution. This is done automatically 

by the telescope when in ADAPTIVE mode, but must be done manually if the telescope was preset 

in ACTIVE mode. 

 

11.4.2.1. Error conditions and recovery 

 

 Star not found on ccd47. It may happen that the telescope pointing was not accurate enough 

(the ccd47 field has a diameter of about 15 arcseconds), or that the star position given the 

previous PresetAO command was incorrect. 

 Star found, but of very different magnitude. In this case the system will assume that the 

wrong star was found, and will stop. 

 Camera lens position not reached: if the seeing is very bad, it may prevent a good 

measurement of the pupil position on ccd39, causing the camera lens centering to fail. 

 AdSec safety failure during the temporary closed loop: see chapter [] regarding this 

condition. 

 

In case of any error, since there are no parameters for the command, the only option for the operator 

is to solve the external problem and try again. If any of the parameters sent with the PresetAO 

command need to change (for example, the star position or magnitude needs to be changed), the 

operator must first send another PresetAO command and then repeat the AcquireRefAO. 

 

An AcquireRefAO can be repeated any number of times. 

11.4.3. StartAO 

 

Once the AcquireRefAO has completed, the loop can be closed immediately with the StartAO 

command. This command has no parameters and no failure modes (apart from hardware failures), 

since it just enabled the “fastlink” fiber over which the slopes are transmitted. 

 

Once the system is in closed loop, the realtime part will go on indefinitely until another command is 

sent, or until a safety failure occurs. 

 



11.4.3.1. Error conditions and recovery 

 

No errors are expected during the command. After that, the system is in closed loop and an AdSec 

safety failure can occur. See chapter []. 

 

11.4.4. PauseAO/ResumeAO 

 

The PauseAO command suspends the AO loop, while the ResumeAO command resumes a 

previously paused loop. Their operation include a check on the incoming light on ccd39 before 

resuming the loop: 

 

PauseAO: 

 Records illumination level on ccd39 

 Disables the “fastlink” fiber and stops the flow of slopes to the adaptive secondary 

 

ResumeAO: 

 Checks that the illumination level is the same as recorded during the ccd39 

 Enables the “fastlink” fiber and resumes the flow of slopes to the adaptive secondary 

 

The check on the illumination level prevents resuming the loop if, during the pause, the reference 

star is not in the WFS field of view anymore. This may happen in case of tracking drifts, or if some 

incorrect offsets were executed during the pause. 

 

11.4.4.1. Error conditions and recovery 

 

 Illumination level check fails on ccd39 during resume. Solution: if the reference star 

position is known, fix the WFS position using an OffsetAO command and try again. 

Otherwise, the loop must be opened with a StopAO command and the AO sequence started 

again from the PresetAO. 

 

11.4.5. OffsetAO 

 

The OffsetAO can be executed in any condition (loop open, closed, or paused). 

 

If the loop is open or paused, it will be executed simply moving the WFS stages by the specified 

amount. The reference star will be then lost, unless the same offset is executed by the telescope 

mount. 

 

If the loop is closed, the WFS stages will be moved in small steps of 0.3 mm, waiting at each step 

for the tip-tilt offloading to recover the movement. The execution time for the offset is 

correspondingly greater. 

 

11.4.6. Other failure modes 

 

11.4.6.1. AdSec safety fault 

 



When the loop is closed, the AdSec mirror shape and forces are under continous safety check by the 

FastDiagnostic process. If an out-of-range condition is detected, the power to the mirror actuators 

will be turned off, terminating immediately the AO loop and causing the shell to go back to rest 

position. 

In this event, the AdSec mirror will execute its own “RecoverFailure” routine, which brings it back 

to the Operating state where it is ready to be set again. In the meantime, any AO operation in 

progress will have been cancelled, and the WFS has been notified of the event and stopped as well 

in order to stop the flow of slopes to the secondary mirror. 

 

The operator must set the shell again (see chapter 11.1.1) and restart the AO observation from the 

PresetAO command. 

 

11.4.6.2. Hardware failure 

 

If a hardware failure happens, it will be generally impossible to continue the AO observation. It is 

not feasible to list all possible hardware failures. What will happen is that commands will start to 

fail randomly with specific error messages about the faulted hardware component. It will be 

necessary to look at the Arbitrator GUIs and log files to properly diagnose and fix the problem. 

 

12. Calibration procedures 
 

 

12.1. Interaction matrix calibration 

12.1.1. Preparation 
The measurement is done in daytime using the retroreflector. It is critical that the system optical setup is as similar as 

possible to the one used during night observation.  The setup is described in detail in the  “FLAO User Procedures” in 

chapter 7 (daytime AO closed loop). Basic setup of the AO system (software startup, power on, etc) is also described in 

the same document. 

This document assumes that the system has been setup according to the User Procedures document, and that an AO 

daytime closed loop has been successfully closed. 

12.1.2. Measurement parameters 
When measuring a reconstructor matrix, a few parameters must be chosen before starting the measure: 

 AdSec modal basis  

 WFS CCD binning 

 

12.1.2.1. Modal basis 

 

The adsec modal basis (sometimes called modes-to-commands or M2C matrix) is a list of command vectors. Each 

vector contains the actuator commands that are needed to generate a certain modal shape on the mirror. The modal 

shapes definition, and the calculation of the corresponding actuator commands, is done with a specialized procedure 

that reduces data taken with the 4D interferometer. 

In practice, a modal basis is a directory on the AdSec computer, which contains several files and subdirectories. Here is 

a typical layout: 

 

[AOeng@adsecdx M2C]$ ls -l KL_v16 



drwxr-xr-x   2 AOeng aoacct     32768 May 15 02:48 RECs 

drwxr-xr-x   2 AOeng aoacct      4096 Nov 12  2013 disturb 

drwxr-xr-x   3 AOeng aoacct      4096 Oct 15  2010 filtering 

drwxrwxrwx   3 AOeng aoacct   1019904 Jul  2 04:55 gain 

drwxr-xr-x 130 AOeng aoacct      4096 Oct 13  2013 intmatAcq 

-rw-r--r--   1 AOeng aoacct   3617280 Sep 15  2013 m2c.fits 

  drqxr-xr-x   2 AOeng aoacct      4096 May  1 19:46 modesAmp 

 

The name “KL_v16” identifies a modal basis, whose contents are found in the “m2c.fits” file. Several subdirectories 

exist, which contain data that is only valid when used together with this specific modal basis: reconstructors, time 

filtering matrices, gain vectors, etc. 

This directory structure has been created when the modal basis was measured, and there is no need to setup it manually. 

12.1.2.2. WFS CCD binning 

The FLAO WFS can operate in four different binning modes, numbered from 1 to 4 inclusive, depending on the 

reference star brightness. In order to close the loop using a binning mode, a reconstructor matrix must have been 

measured with the WFS configured with the same binning. Thus, multiple measurements of the same modal basis may 

be needed, up to one for each binning. 

 

12.1.3. Modal history generation 

The first step is to generate a modal history, that is, a sequence of push-pull commands that will be loaded on the AdSec 

and “played” during the measurement. Such a sequence is also called a disturbance, because it uses the disturbance 

feature of the AdSec in order to work. 

This step can be executed offline, as it does not need any input from the live system except for the presence of the 

modal basis on disk. 

The parameters needed to generate a modal history are (please refer to the screenshot on the next page for parameters 

placement): 

1. The modal basis to use (already decided before) 

2. How many modes to measure: initially 10, will be increased with further iterations. 

3. Type of modal history (push-pull or sinusoidal): only push-pull is currently allowed 

4. No. of frames for each movement: currently fixed at 3 frames 

5. Push-pull cycles: as many as possible, but without exceeding the AdSec disturbance capacity, which is 4000 

frames. Thus the total product No. of frames * cycles *2 must be <= 4000. The GUI will show the total in 

green or in red (if it is over the threshold). 

6. Amplitude file: this is a file containing a vector of amplitudes, one for each mode. Unless a hand-optimized 

one is available, one of the pre-defined ones like 672_0.2.fits is a good start. 

After parameters have been entered, click on “Generate”. After a few seconds, a tracking number will appear on the 

right. This is the disturbance tracking number, which must be noted down for later use. 

Prerequisites: 

 WFS software must be up and running, as described in the User Procedures document in section 2 (“Start 

and check Software status”). 

 

 Action Procedure Notes 

  Start intmatDisturbGui [AOeng@wfsdx ~]$ 

intmatDisturbGui 

 

  Enter main parameters Enter modal basis, number of 

modes to measure. 

 

  Enter push-pull parameters Click on push-pull radio button. 

Enter no. of frames/movement 

 



and cycles 

Check that total is <= 4000 

  Generate disturbance Click on “Generate”  

  Note down the tracking 

number  

 Format is 

YYYYMMDD_HHMMSS 

 

 

 

 

Note: 

A modal history can be re-used as many times as needed, and is independent from WFS CCD binning. 

 

12.1.4. Interaction matrix measurement 

After a modal history is available, the interaction matrix can be measured. It is critical that the measuring conditions are 

as similar as possible to the night-time conditions. This means: 

1. No lights in the dome 

2. No vibrations (as far as possible) 

3. All WFS tracking loops (rotation, camera lens, anti drift) active, as described below. 

 

 

The measurement is usually done in closed loop. A full system setup is needed, that can be obtained following the 

User Procedures manual in section 6.5 (“Close AO loop in daytime”). That procedure includes all vibration mitigation 

needed for daytime operation. 



If no reconstructor matrix is available for the current WFS pupil and binning combination, a closed-loop 

measurement is not possible. It is suggested to do a low-order measurement (10 modes) with very long averating (100 

cycles or more) in order to obtain a preliminary reconstructor matrix. The measurement can be then iterated (see the 

“iteration” chapter later on). 

The measurement is done at a loop speed of 600 Hz. This is a compromise between the necessity of going as fast as 

possible, in order to minimize vibrations, and the mirror settling time. This speed should be entered in the WFS 

Arbitrator GUI as described below. Speeds different from 600 Hz have not been tested and may not work. 

 

Prerequisites: 

 Execute User Procederues section 6.5  - Close AO loop in daytime 

 

 Action Procedure Notes 

1.  Open the AO loop Press STOP on the AOS command 

GUI 

 

2.  Set 600 Hz loop speed Open WfsControl GUI. 

In the “Loop params” panel enter 

the following parameters: 

Binning = the one chosen for the 

measurement 

Loop frequency = 600 Hz 

Modulation: 3 (bin 1-2) or 6 (bin 3-

4) 

And click the “Apply” button 

 

 

3.  Start tracking loops On the WfsControl GUI, make sure 

that the three tracking loops: 

1) rotator tracking 

2) Camera lens tracking 

3) Anti drift 

are enabled. Click on the 

corresponding Enable or On 

buttons if needed. 

 

 

4.  Start intmatAcquireGui [AOeng@wfsdx ~]$ 

intmatAcquireGui 

 

5.  Select the M2C  Same one used during disturbance 

generation 

 

6.  Select disturbance If a different one is needed, select 

it. 

The last generated 

disturbance is pre-

selected 

7.  Enter the no. of iterations Use at least 4 to fully use the 

AdSec internal buffers. If more 

averaging is wanted, use a higher 

multiple of four (i.e. 16, 48, etc).  

Time needed is about 

1 minute every 4 

iterations including 

overheads. 

8.  Enter the reconstructor If a reconstructor is available for 

the current pupil and binning 

combination, click the “Acquire in 

closed loop” checkbox and select 

M2C, reconstructor, and a low gain 

vector like 0.05.fits 

An old reconstructor 

with a different M2C 

but the same WFS 

pupils may be used if 

it is still working fine.  

9.  Start measurement Click the “Acquire” button on the  



GUI 

10.  Wait for completion It will take about 1 minute for 

every 4 iterations. 

 

11.  Note down tracking number Tracking number appears next to 

the Acquire button 

Same YYYY… 

format as before. 

 

 

 

 

 
 

 
 



12.1.5. Reconstructor matrix generation 
After an interaction matrix has been acquired, one or more reconstructor may be generated from it. Typically, a full 

interaction matrix is acquired with 500 or 600 modes, and a set of reconstructors with progressively more modes is 

generated (for example: 10, 100, 250 and 500). 

The generation is done with a GUI, which however uses terminal input for some parameters. It is best to use a 

terminal dedicated to this GUI to avoid conflicts. 

The generation can be done “offline”, just starting the GUI. Only the WFS software is needed to be running. 

Prerequisites: 

 WFS software must be up and running, as described in the User Procedures document in section 2 (“Start 

and check Software status”). 

 

 Action Procedure Notes 

1.  Start intmatAnalyseGui [AOeng@wfsdx ~]$ 

intmatAnalyseGui 

 

2.  Select acquisition Select M2C and tracking number to 

analyse 

 

Last tracking number 

is pre-selected 

3.  Select parameters “skip frame” and “avg frames” are 

always “2”. Check “remove tip-

tilt” and uncheck “only check 

saturation” 

 

 

4.  Start analysis Click on the Analyse button  

5.  Answer questions on 

terminal 

Often the terminal pauses and asks 

to press Enter to continue, in order 

to look at a plot or graph 

Sometimes the 

terminal is hidden 

behind big plots. 

Close or move them 

away. 

 

12.1.5.1. Iteration 

Once a reconstructor is available, it is recommended to repeat the measurement in closed loop. Repeat all steps in 

section 5, and when configuring the acquisition GUI, click the “Acquire in closed loop” checkbox and select the M2C 

and reconstructor. A very low gain (like 0.05) is recommended. 

The typical reconstructor iteration is as follows: 

1. 10 modes (open loop) 

2. 10 modes (in closed loop with previous 10 modes) 

3. 50 modes (in closed loop with previous 10 modes) 

4. 100 modes (in closed loop with previous 50 modes) 

5. 400 modes (in closed loop with previous 100 modes) 

6. 400 modes (in closed loop with previous 400 modes) 

 

Only the last reconstructor is considered useful. In addition, a 10 modes reconstructor is generated from the last 

interaction matrix measurement, for use during the camera lens centering loop. 



 

 

 

 

13. Saving diagnostic data 

13.1. Data format description 

 

Diagnostic data is stored into a directory on the adsec computer: 

 
/local/aomeas/adsec_data 

 

the wfs computer mounts this directory via NFS using the same name, as described in sections 1.8 

and 1.9. The /local/aomeas prefix can be changed using the ADOPT_MEAS environment variable. 

 

Data is organized into “tracking numbers”. Each tracking number is a directory containing a 

number of data files. The directory name is a timestamp of when the data saving started and, in 

order avoid having thousands of subdirectories, the adsec_data directory is further subdivided into 

directories for each day. Thus the full path for a given tracking number is: 

 
$ADOPT_MEAS/adsec_data/YYYYMMDD/YYYYMMDD_HHMMSS 

 

where YYYYMMDD is a date in year-month-day format (like “20151125”) and HHMMSS is a 

time in 24-hour-minute-format (like “115834”). 

 

Typically, data inside a tracking number is not analyzed manually, but using the IDL elab_lib tool 

described in the next section, and the user only has to record the tracking number that identifies a 

particular acquisition of interest. 

 

Each tracking number contains a number of files. Most files also contains the same timestamp in 

their filename, in order to allow quick identification during data analysis. In the following table, 

“xxx” stands for the full YYYYMMDD_HHMMSS. Thus for example, the name 

“Frames_xxx.fits” will be saved on disk with a name like “Frames_20160301_224946.fits”. 



 
Table 1: List of files included in a tracking number 

Filename Format* Description Typical 

size** 

adsec.sav IDL SAV file Contains a number of IDL 

variables with detailed AdSec 

status information. 

15 MB 

AntiDrift_xxx.fits 4xN FITS, 

FLOAT 32 bits 

anti-drift” background 

corrections applied to the ccd39 

background file 

68 KB 

Commands_xxx.fits 672xN FITS, 

FLOAT 32 bits 

Mirror actuator commands 11 MB 

CrcErrors_xxx.fits N-elements 

FITS, INT 32bits 

CRC error counter on fastlink 

fiber 

20 KB 

DarkApplications_xxx.txt ASCII Timestamps of ccd39 

background changes 

From zero to 

few KB. 

Dimm_xxx.fits Variable length 

FITS, FLOAT 

32 bits 

Dimm values received from TCS 

during data acqusition 

3K 

FlTimeout_xxx.fits N-elements 

FITS, INT 32bits 

Timeout counter on fastlink fiber 20 KB 

Frames_xxx.fits 80x80xN FITS, 

INT 16 bits 

Ccd39 pixel frames 49 MB 

FramesCounter_xxx.fits N-elements 

FITS, INT 32bits 

Slope computer-generated frame 

counter 

20 KB 

GuideCam_xxx.fits Variable length 

FITS, FLOAT 

32bits 

 3 KB 

LoopClosed_xxx.fits N-elements 

FITS, INT 32bits 

History of loop closed flag 

during data acquisition 

20 KB 

MirrorCounter_xxx.fits N-elements 

FITS, INT 32bits 

MirrorBCU-generated frame 

counter 

20 KB 

Modes_xxx.fits 672xN FITS, 

FLOAT 32 bits 

Delta-Modes (reconstructor 

output) 

11 MB 

PendingCounter_xxx.fits N-elements 

FITS, INT 32bits 

mirror “pending” frame counter 20 KB 

Positions_xxx.fits 672xN FITS, 

FLOAT 32 bits 

Mirror actuator positions 11 MB 

SkipCounter_xxx.fits N-elements 

FITS, INT 32bits 

“skip frame” frame counter 20 KB 

Slopes_xxx.fits 1600xN FITS, 

FLOAT 32 bits 

Slopes calculated by slope 

computer BCU 

25 MB 

Timestamp_xxx.fits N-elements 

FITS, INT 32bits 

 20 KB 

wfs.fits FITS with no 

data, only header 

Contains the WFS device status 

in the FITS header. 

17 KB 

WFSGlobalTimeout_xxx.fits N-elements 

FITS, INT 32bits 

Global timeout counter 20 KB 

WindDir_xxx.fits Variable length 

FITS, FLOAT 

32bits 

Wind direction data received 

from TCS during data 

acquisition 

3K 



WindSpeed_xxx.fits Variable length 

FITS, FLOAT 

32bits 

Wind speed data received from 

TCS during data acquisition 

3K 

 

* In the format specification, N refers to the dataset length (usually 4000 frames) 

**Typical size is given for a dataset length of 4000 frames. 

 

13.2. Optical Loop Diagnostic GUI 

 
 

 

The Optical Loop Diagnostic GUI is a tool to trigger saving of diagnostics data sets. The user has to 

choose which data must be saved using the checkboxes in the “Optical Loop” panel. If the system is 

in open loop, only Frames and Slopes are available (if the other data types are selected, they will be 

saved but will only contains zero). Data types not described in the checkbox, but listed in Table 1, 

are always saved. 

 

The number of frames to save can range from a minimum of 2 to a maximum only limited by the 

amount of available RAM on the wfs computer. A typical value for AO data is 4000 frames, 

however values up to 20000 frames have been used with success. 

 

Optionally, a PSF from one of the available instruments (ccd47, IRTC/LUCI) can be selected, and it 

will be saved as an additional FITS file in the tracking number directory. Use of the PSF checkbox 

will trigger specialized routines to trigger frame acquisition on the instrument, and may fail if the 

instrument has not properly setup. 

 

Once all values have been initialized, click the “Start” button to star the data acquisition. The 

display will show the tracking number and the acquisition progress in terms of number of frames 

and data speed in Hz, refreshed about once per second. When the acquisition is complete, the 



display will show “Saving…” while data is saved on disk. Once the saving is complete, the tracking 

number turns green. 

 

14. Elaboration library (elab_lib) 
 

The elaboration library is an IDL object-oriented library dedicated to the analysis of the FLAO 

diagnostic data described in section 13. 

 

An introduction to the elaboration library can be found on the LBTO wiki site: 

 

http://wiki.lbto.org/bin/view/AdaptiveOptics/Elab 

 

The elab_lib has an internal help system that provides a concise description of (nearly) every 

procedure and function. See the “help” section in the Getting Started page of the above wiki site for 

more information. 

 

 

15. Configuration files 
 

15.1. File format 

 

Configuration is stored into configuration files. A configuration file is an ASCII file, with a 

filename that by convention ends in “.conf”. 

Configuration files are stored into this directory: 

 
$ADOPT_ROOT/conf/<system>/current/processConf/ 

 

where <system> is one of “wfs” or “adsec”. “current” is a soft link to a specific subsystem name 

(like “W1” or “672a”) and is usually created by the prepare.py procedure (described in section 2.2) 

 

There is typically one configuration file for each process running in the AO Supervisor. A process 

looks up the configuration file name using the identity provided by the “-i” command line switch. 

For example, if a SimpleMotorCtrl instance is started up with this command line: 

 
$ADOPT_ROOT/bin/SimpleMotorCtrl –i adc2 

 

it will try to load this configuration file: 

 
$ADOPT_ROOT/conf/<system>/current/processConf/adc2.conf 

 

Configuration files are a list of keywords. Each keyword occupies a text line with three 

components, separated by one or more spaces and/or tab characters: 

 
<name>    <type>   <value> 

 

<name>: the keyword name. Letters (case sensitive) and numbers are accepted. 

<type>: one of the types listed in Table 2, in lowercase. 

<value>: keyword value. See the type description for each value. 

http://wiki.lbto.org/bin/view/AdaptiveOptics/Elab


 
Table 2: List of keyword types 

Type Description Examples 

Int Integer number 23, -400 

String String. Double quotes are needed if the string 

contains spaces 

adc, “adc motor”, 127.0.0.1 

Float Generic floating-point number 0.2,  -644.2 

float32 Floating point number, limited to 32 bits  

double Floating point number, double precision  

structure A sub-configuration file. The keyword value is 

the filename relative to 

$ADOPT_ROOT/conf/xxx/current. 

 

 

 

15.2. MsgD configuration file 

 

A special configuration file is reserved for the MsgD-RTDB process. This file always has the name 

“msgdrtdb.conf” and resides at the same level as the “processConf” directory. An example follows: 

 

loglines     2000000         
autodump     300 
 
ident     FLAOWFS 
peers     ADSEC:192.168.13.12 
 

<loglines> is the maximum number of line to write in the MsgD log file before opening a new one. 

<autodump> is the interval between information dumps in the log file 

<ident> sets this MsgD identity 

<peers> is a comma-separated list of <identity>:IPaddress pairs, that specify other MsgD to which 

this MsgD will try to connect to. 

 

15.2.1. Configuring peering 

 

Message daemons can communicate between them using a custom "peering" mechanism: each 

MsgD is identified by a string (called "identity"), connects to all other MsgDs and appears as an 

ordinary client. If one or more MsgD are not reachable, a polling loop at low frequency (one 

attempt every 5-10 seconds) is started. 

 

Peering is configured with the “ident” and “peers” keywords described above. All MsgDs 

participating in a peering set must have unique identities. 

 

15.2.2. LBT setup 

 

The following identities has been defined at LBT: 

 

adsec computer: ADSEC 

Flao WFS computer: FLAOWFS 

LBTI WFS computer: LBTIWFS 



 

The ADSEC MsgD peers with all possible WFSs. Each WFS only peers with the ADSEC MsgD. 

 

At LBT, right and left sides do not peer, that is, they are completely independent from each other. 

 

15.2.3. LTB configuration files 

 

on adsecdx:  $ADOPT_ROOT/conf/adsec/current/msgdrtdb.conf 
 

ident ADSEC 
peers FLAOWFS:10.144.0.85,LBTIWFS:192.168.149.100 
 

on wfsdx: $ADOPT_ROOT/conf/wfs/current/msgdrtdb.conf 
 

peers ADSEC:192.168.11.12 
ident FLAOWFS 
 

Similar configuration is used on the left side, with the appropriate IP addresses. 

 

15.2.4. How to check if peering works correctly 

 

The easiest way is to use the "thrdtest" utility to connect to the local MsgD and list the attached 

clients. The others MsgDs will appear as a client marker with "(Peer)". For example: 

 

[flao@wfsdx ~]$ thrdtest 
 
THRDTEST: 6.14 [TH](Built: Sep 10 2015 14:46:04) - Dbg lev.:0, quiet, Line edit & 
history:Yes 
Trying to connect to MsgD @ 127.0.0.1:9752 
 
THRDTEST cmd: clist 
 
THRDTEST MsgD client list: 
 M_ADSEC (Peer) [Id=1 N.Conn=1] 11.6 (Built: Sep 10 2015 14:41:52) R NW 
@=193.206.155.42:9752 Start:2015-09-11 09:24:33.005752 
 

 

  

 

15.3. Common keywords 

 

All configuration files can contain the keywords listed in Table 3: 

 
Table 3: List of common keywords 

Keyword type Description Notes 

Server string IP address or hostname of MsgD server Usually 

127.0.0.1 

LogLevel string General log level, allowed values are:  



ERR       (only log errors) 

WAR     (log errors and warnings) 

DEB      (log errors, warnings and debug) 

TRA     (maximum log level) 

Simulation int If present and set to 1, the software will 

enter simulation mode (if available) 

 

 

 

16. Configuration keywords 
 

The following tables list all the keywords accepted by the various configuration files. All keywords 

are mandatory unless otherwise noted. If a mandatory keyword is missing, the process will exit and 

write into its log file the missing keyword. If a file contains keywords not among the ones in the 

table, they will be silently ignored. 

 
Table 4: List of keyword for SimpleMotorCtrl instances 

Keyword type Accepte

d values 

Unit Description Notes 

MotorType string filterwheel 

adc 

rerotator 

mercury 

 Motor type. Correspond to a 

different C++ class 

implementing motor 

functionality. 

 

Name string   Motor name. Only used for 

GUI displays 

 

IPaddr string Ip 

address 

or 

hostname 

 IP address or hostname to 

connect to 

 

IPport Int   IP port to connect to  

Max Float32 Any mm or 

degrees 

Maximum allowed position  

Min Float32 Any mm or 

degrees 

Minimum allowed position Movement 

commands outside 

min/max 

boundaries are 

rejected. 

GoodWindow Float32 Any Mm or 

degrees 

Threshold to accept 

position: if abs(current 

position – commanded 

position) <= good window, 

the device is considered “in 

position” 

 

StartingPos Float32  mm or 

degrees 

Position to move to at 

startup, (if homing is 

enabled, this position is 

assumed after homing has 

completed). 

 

Ratio Float32   Multiplier to apply to 

translate user commands 

into encoder increments 

 



CircleSteps Float32  Encoder 

increme

nts 

(only for circular 

commands) number of 

device increments to 

perform one cicle 

 

AutoHoming Int 0-1  If 1, perform homing 

whenever the device is 

turned on or newly 

connected 

 

AutoHomingOffset Int 0-1  If 1, apply an offset position 

after the homing procedure 

is completed 

 

HomingOffset Float32  Encoder 

increme

nts 

Offset to apply to the 

position found by the 

homing routine  

 

HomingPosition Float32   Special position: when 

commanded to this position, 

start the homing procedure 

 

AbortPosition Float32   Special position: when 

commanded to this position, 

abort the current movement 

The ability of 

aborting a 

movement is 

device-dependent 

HomingSpeed Int  Device 

units 

Speed of homing movement   

CruiseSpeed Int  Device 

units 

Speed of all other 

movements 

 

Acceleration Int  Device 

units 

Acceleration/deceleration  

Unidirectional Int  0-1 If set to 1, only move 

towards positive direction. 

 

customPositionNu

m 

Int  0-N Number of custom positions 

defined. 

The definition of 

custom positions is 

optional. If this 

keyword is present 

and with a non-

zero value, all 

posX_name and 

posX_pos 

keywords are 

mandatory. 

posX_name String   Name of position X (for 

GUI display) 

Allowed values for 

X are from 0 to 

customPositionNu

m minus 1. 

posX_pos Float32  mm or 

degrees 

Definition of position X   

 
Table 5: Keywords required for SimpleMotorCtrl instances of type "rerotator"  

Keyword type Accepted 

values 

Unit Description Notes 

HomingType String “ncal” 

(homing to 

 Type of homing to 

perform 

The keyword 

value is the 



negative) 

“nrm” 

(homing to 

positive) 

 name of the 

Pollux serial 

command. 

Speed float  Device 

units 

Movement speed   

Accel float  Device 

units 

Movement 

acceleration 

 

nlimits int  1 or 2 Number of limit 

switches 

 

 

 
Table 6: Keywords for the “Pinger” process 

Keyword type Accepted 

values 

Unit Description Notes 

PollingPeriod Float 0-1000 s Interval between 

successive pings to the 

same device 

 

TimeoutPeriod float 0-1000 s Period after which a 

device is considered to 

be offline 

Must be less or 

equal to 

PollingPeriod 

device_XXXX string IP or 

hostname 

 IP address or hostname 

of device. The XXX 

part is the name of the 

device, and will be used 

in RTDB variable 

names. 

Any number of 

device_XXXX is 

allowed. 

If a hostname is 

used, /etc/hosts 

must contain an 

entry to resolve it 

to an IP  address 

 
Table 7: Keywords for the “TTCtrl” process 

Keyword type Accepted 

values 

Unit Description Notes 

ccd39process string   Identity of the ccd39 

controlling process. 

Used to generate the 

name of the RTDB 

variable containing the 

current frame rate. 

 

pingerProcess string   Identity of the pinger 

process. Used to 

generate the name of 

the RTDB variable 

containing the bcu47 

online status. 

 

ACT_NUM Int 3  Number of tip-tilt 

mirror actuators. 

Only “3” is 

currently 

supported! 

TIMEOUT_MS Int 1-Inf ms Timeout for MirrorCtrl 

replies when applying 

Includes 

round-trip via 



values Ethernet to the 

BCU47 

ZV_TO_XV double Any  Ratio between user-

coordinates volts and 

device voltage 

Usually 1 

MAX_FREQ Double 0-1000 Hz Maximum allowed 

value for user-defined 

frequency 

 

MIN_FREQ Double 0-1000 Hz Minimum allowed 

value for user-defined 

frequency  

 

MAX_VOLT Double 0-10 V Maximum allowed 

value for user-defined 

voltage 

Used when 

controlling 

axes 

independently 

MIN_VOLT Double 0-10 V Minimum allowed 

value for user-defined 

voltage 

Used when 

controlling 

axes 

independently 

DEFAULT_LL_FREQ Double 0-1000 Hz Default frequency 

value at startup 

 

DEFAULT_LL_AMP Double 0-10 V Default modulation 

amplitude value at 

startup 

 

DEFAULT_LL_OFFSET Double 0-10 V Default voltage offset 

at startup 

 

DEFAULT_LL_PHASE_1 Double 0-360 deg Default phase for first 

actuator 

Usually set at 

0,120 or 240 

but may be 

fine-tuned for 

a specific 

mirror head. 

DEFAULT_LL_PHASE_2 Double 0-360 deg Default phase for 

second actuator 

 

DEFAULT_LL_PHASE_3 double 0-360 deg Default phase for third 

actuator 

 

DEFAULT_ROT_ANG Double 0-360 deg Default rotation applied 

when translating high-

level XY positions into 

low-level commands 

 

DEFAULT_FREQ Double 0-1000 Hz High-level frequency at 

startup 

If 0, uses sync 

signal from 

bcu39 

DEFAULT_AMP Double 0-10 V High-level amp at 

startup  

 

DEFAULT_OFFSET_X double 0-10 V High-level X offset at 

startup 

 

DEFAULT_OFFSET_Y double 0-10V V High-level Y offset at 

startup  

 

 



Table 8: Keywords for the Autogain routine 

Keyword type Accepted 

values 

Unit Description Notes 

slopes_skip 

 

Int 1-1000  Number of slope frames 

to skip after applying a 

gain value 

 

slopes_record Int 1-1000  Number of slope frames 

to record (after 

skipping) for each gain 

value 

 

removeBadModes Int 0-1  If 1, read the 

“high_force_modes.fits” 

file in the current M2C 

directory and set to zero 

the gain on those modes. 

If the file does not 

exists, this 

keyword is silently 

ignored. 

reduction_factor Float any  Apply this factor 

unconditionally to any 

generated gain value 

Set to 1.0 for no 

reduction. Usually 

set to 0.8 or 0.7 

interpolateGains Int 0-1  If 1, interpolate gains 

between mid and high-

order, instead of 

producing a step-like 

function 

Gain interpolation 

is experimental. 

RR Int 0-1  If 1, retro-reflector 

operation is assumed 

and all gains are 

reduced by a factor of 2. 

 

sinusIM Int 0-1  If 1, a sinusoidal IM is 

assumed and all gains 

are reduced by a further 

factor of 2 

 

max_iterations Int 1-10  Maximum number of 

iterations to  perform 

while exploring higher 

gain values, if a 

minimum is not found 

in the current range. 

 

repeat_th Float 0-1  Repeat threshold in 

percentage (0..1):  if the 

modal RMS at the 

optimal gain value is 

higher that the max 

modal RMS multiplied 

by this threshold, the 

measurement is iterated 

with 50% higher gains. 

 

safe_skip Float 0-1  Percentage of safe-skip 

condition above which 

the autogain is aborted. 

0=no check 

1=wait for 100% 

safe skip before 

aborting. Check is 

done once per 



second. 

bin1_min Float any  Minimum gain value to 

apply 

All bin1 keywords 

are also repeated 

for bin2, bin3 and 

bin4. 

bin1_start Float Any  Initial start of gain range  

bin1_end Float Any  Initial end of gain range  

bin1_step Float Any  Step to use while 

exploring the range 

 

bin1_cycles Int Any  Number of times the 

range is explored in a 

single measurement. 

Multiple range 

explorations are 

averaged. 

bin1_max_tt Float Any  Clip value for tip-tilt 

gain 

 

bin1_max_ho1 Float Any  Clip value for mid-order 

gain 

 

bin1_max_ho1 Float Any  Clip value for high-

order gain 

 

bin1_ho_middle Int 3-670  Mode number that 

divides mid-order 

modes from high-order 

modes. 

 

 

Table 9: Keywords for the “JoeCtrl” process 

Keyword type Accepted 

values 

Unit Description Notes 

ccdName string “39”, “47”  CCD name Only used for GUI 

displays 

ccdNum Int 39, 47  CCD number.  Number is often 

used in code. 

ccdXdim Int 1-32767 px Number of pixels in the 

X  (horizontal) 

dimension, not binned. 

 

ccdYdim Int 1-32767 px Number of pixels in the 

Y (vertical) dimension 

 

ccdDefaultXbin Int 1-5  Default X binning 

applied at startup 

 

ccdDefaultXbin Int 1-5  Default Y binning 

applied at startup 

 

ccdDefaultSpeed Int any Kpixel/sec Default readout speed 

applied at startup 

 

ccdDefaultBlack Int 0-1023 Arbitrary Default black level 

applied at startup 

 

ccdBlacksNum Int 2, 4  Number of blacks 

levels to configure: 4 

for ccd39 and 2 for 

ccd47 

Corresponds to the 

number of 

amplifier channels. 

minRep Int 0  Minimum allowed 

value for the 

“repetition” parameter 

 



maxRep Int 1023  Maximum allowed 

value for the 

“repetition” parameter 

 

maxNumSpeeds Int 1-8  Number of supported 

readout speeds 

“supported” by the 

JoeCtrl process, 

not the LittleJoe 

hardware 

maxNumBins Int 1-8  Number of supported 

binning configuration 

“supported” by the 

JoeCtrl process, 

not the LittleJoe 

hardware 

num_programsets Int 1-8  Number of programsets 

stored on disk 

 

programsetX Struct

ure 

  Filename of the 

configuration file 

describing program set 

#X 

 

startProgramSet Int -1 – up to the 

value of 

“num_ 

programsets” 

 Number of the 

programset to load at 

startup. A value of -1 

means to load no 

programset. 

 

fanReqVar String Variable 

name 

 Name of the RTDB 

variable used to control 

the LittleJoe fan 

It is assumed that 

setting this variable 

to “1” will start the 

fan, and to “0” will 

stop it. 

fanCtrlActive Int 0-1  If 1, try to control the 

fan using the previous 

variable. If 0, ignore it. 

A limitation of the 

current FLAO 

hardware is that a 

single hardware 

switch controls 

both the LJ39 and 

LJ47 fans. Only 

one control loop 

should be active. 

fanOnTemp Int Any °C Temperature over 

which the fan is turned 

on 

 

fanOffTemp Int Any °C Temperature under 

which the fan is turned 

off  

 

 
Table 10: Keywords for the “Gopt” (optical gain) process 

Keyword type Accepted 

values 

Unit Description Notes 

gopt Float Any  Initial optical gain 

vaule, loaded at 

startup on the BCU 

Usually 1.0 

nframes Int 1-10000  Number of frames to 

record for the optical 

Initial value, may be 

changed from the GUI 



gain analysis 

mode int 0-671  Mode to use for 

optical gain analysis 

Deprecated, now 

automatically detected 

by the elab_lib 

freq Float 1-200 Hz Modulation 

frequency for optical 

gain analysis 

Deprecated, now 

automatically detected 

by the elab_lib 

trackGain Float Any  Gain of the tracking 

loop 

Initial value, may be 

changed from the GUI 

delay Float Any s Delay between 

adjusting the optical 

gain and saving new 

data 

 

 

 

 
Table 11: Keywords accepted by WfsArb instances 

Name Type Accepted 

values 

Unit Notes 

OP_MODES String 

array 

Any  Defines the list of “operating modes” 

available to the WFS. These operating 

modes are described in 

$ADOPT_SOURCE/PyModules/AdOpt/cf

g_W1.py. 

WfsSpec string FLAOWFS, 

LBTIWFS 

 Defines the WFS name, should match the 

one used for the current MsgD. 

MinLoopFreq Float 1-1000.0  Minimum loop frequency accepted in the 

ModifyAO command 

MaxLoopFreq Float 1-1000.0  Maximum loop frequency accepted in the 

ModifyAO command 

MaxOvsFreq Float 1-1000.0  Maximum oversampling frequency 

accepted by the Adaptive Secondar (see 

[]) 

MinHODark int 1-1000  Minimum no. of frames to average when 

taking a dark frame with ccd39 

MaxHODark Int 1-1000  Maximum no. of frames to average when 

taking a dark frame with ccd39 

MinTVDark Int 1-100  Minimum no. of frames to average when 

taking a dark frame with ccd47 

MaxTVDark Int 1-100  Maximum no. of frames to average when 

taking a dark frame with ccd47 



MinIRTCDark Int 1-1000  Minimum no. of frames to average when 

taking a dark frame with IRTC 

MaxIRTCDark Int 1-1000  Maximum no. of frames to average when 

taking a dark frame with IRTC 

MinSlopenull Int 1-1000  Minimum no. of frames to average when 

taking a slopenull frame. 

MaxSlopenull Int 1-1000  Maximum no. of frames to average when 

taking a slopenull frame. 

MaxOffsetXYCloop Float 0.6 mm Maximum accepted offset in closed loop. 

INITIAL STATE String State name  State from which the FSM is initialized. 

Usually “PowerOff” or “Operating” 

TelElevationVar String Variable 

name 

 Name of the RTDB variable which 

contains the current telescope elevation. 

TelRotatorVar String Variable 

name 

 Name of the RTDB variable which 

contains the current telescope derotator 

position. 

RerotVar String Variable 

name 

 Name of the RTDB variable to write in 

order to move the pupil rerotator. 

Adc1Var String Variable 

name 

 Name of the RTDB variable to write in 

order to move the adc wheel #1. 

Adc2Var String Variable 

name 

 Name of the RTDB variable to write in 

order to move the adc wheel #2 

RotatorOffsetBin1 Float 0-360.0 degr

ees 

Offset to apply to the pupil rerotator at 

bin1. 

RotatorOffsetBin2 Float 0-360.0 degr

ees 

Offset to apply to the pupil rerotator at 

bin2. 

RotatorOffsetBin3 Float 0-360.0 degr

ees 

Offset to apply to the pupil rerotator at 

bin3. 

RotatorOffsetBin4 Float 0-360.0 degr

ees 

Offset to apply to the pupil rerotator at 

bin4. 

cameralensTempChec

k 

Int  0 – 1  Activate(1) or deactivate (0) the 

cameralens temperature check 



cameralensTempMin Float -50/+50 °C Minimum temperature required for 

cameralens operation 

cameralensTempNum

ber 

Int 0-9  Position in the powerboard temperature 

array where the relevant cameralens 

temperature is found. 

 

 

 
Table 12: Keywords accepted by CopleyCtrl instances 

Name Type Accepted 

values 

Unit Notes 

iDriveNetAddr String Ip address or 

hostname 

  

Host to connect to. 

 

iDriveNetPort Int 1-65536  Port to connect to 

mvSpeed Float 1-100 Mm/s Stage movement speed 

mvHighEnd Float any Mm Maximum accepted target position 

mvLowEnd Float Any Mm Minimum accepted target position 

stepsRatio Float Any  Ratio between encoder steps and mm. 

HomingPosition Float Any Mm Target position to trigger a homing 

sequence 

AbortPosition Float Any Mm Target position to trigger an abort 

sequence 

GoodWindow Float Any Mm Accepted positioning error 

proportionalGain Int 1-9999  Proportional gain of the internal PID 

loop. Defaults to 4500. 

positiveLimitSwitch Int 0-9  I/O line to use as positive limit switch. 

Zero means not used. 

negativeLimitSwitch Int 0-9  I/O line to use as negative limit switch. 

Zero means not used. 



homeLimitSwitch Int 0-9  I/O line to use as home switch. Zero 

means not used. 

HomingMethod String POS or NEG  Use either the Positive or Negative limit 

switch to perform homing. 

 

17. Table of wfs, adsec and AO status values and commands 
accepted 

 

17.1. Wfs command table 

 

State Accepted commands 

PowerOff Operate 

Operating Off 

Operate 

SaveStatus 

SaveOptLoopData 

AntiDrift 

EnableDisturb 

AutoTrack 

CalibrateHODark 

CalibrateTVDark 

CalibrateIRTCDark 

StopLoop 

PrepareAcquireRef 

ModifyAO 

AOPrepared Operate 

PrepareAcquireRef 

AcquireRef 

StopLoop 

AntiDrift 

AutoTrack 

CalibrateHODark 

SaveOptLoopData 

SaveStatus 

CheckRef 

ModifyAO 

Off 

AOSet CloseLoop 

ModifyAO 

AcquireRef 

Operate 

PrepareAcquireRef 

StopLoop 

AutoTrack 

AntiDrift 

EnableDisturb 



SaveOptLoopData 

SaveStatus 

CalibrateHODark 

CalibrateTVDark 

CheckRef 

Failure RecoverFailure (Operate) 

LoopClosed PauseLoop 

StopLoop 

RefineLoop 

OffsetXY 

OffsetZ 

AntiDrift 

AutoTrack 

EnableDisturb 

SaveOptLoopData 

SaveStatus 

LoopPaused ResumeLoop 

StopLoop 

OffsetXY 

OffsetZ 

AntiDrift 

AutoTrack 

EnableDisturb 

SaveOptLoopData 

SaveStatus 

 

17.2. AdSec Command table 

 

17.3. AO Command table 

 

 

 


