
FLAO System operator manual

1.	 OS installation and configuration ... 6	
1.1.	 Network configuration ... 6	
1.2.	 Kernel parameters .. 6	
1.3.	 Add non-default repositories .. 7	
1.4.	 Add Zeroc-ice repository ... 7	
1.5.	 Install additional packages ... 7	
1.6.	 Install IDL .. 8	

1.6.1.	 IDL related notes ... 8	
1.7.	 Add shared libraries to the runtime path .. 9	
1.8.	 Support for NFS mounts .. 9	
1.9.	 User accounts ... 9	

1.9.1.	 flao account configuration .. 9	
1.9.2.	 Development and maintenance account configuration ... 9	

1.10.	 4D and IDL .. 10	
2.	 Software installation ... 10	

2.1.	 Bulding a test version of FLAO Supervisor ... 10	
2.1.1.	 Checkout FLAO Supervisor source tree and prepare for building 10	
2.1.2.	 Building and installing the source code .. 11	
2.1.3.	 Installing configuration ad calibration data .. 11	

2.2.	 Tools for automatic installation, deployment and usage .. 11	
2.2.1.	 prepare.py .. 12	
2.2.2.	 deploy.py ... 13	
2.2.3.	 flao.py ... 14	
2.2.3.1.	 Housekeeping commands .. 15	
2.2.3.2.	 AO commands .. 15	

2.3.	 Implementation Notes .. 15	
2.3.1.	 AdOpt servers ... 15	
2.3.2.	 Runtime accounts on AdOpt servers ... 16	
2.3.3.	 More details about deploy.py .. 16	
2.3.4.	 More details about flao.py ... 16	

2.4.	 Configuring AO data backup ... 16	
3.	 Software overview .. 17	

3.1.	 Control computers .. 17	
3.2.	 Complete start/stop/restart ... 17	
3.3.	 Starting order .. 18	
3.4.	 Overall software scheme .. 18	

3.4.1.	 System processes ... 19	
3.4.2.	 AdSec control processes ... 19	
3.4.2.1.	 IDL issues .. 20	
3.4.3.	 WFS control processes .. 20	
3.4.4.	 Arbitrators ... 20	
3.4.5.	 AOS ... 20	

3.5.	 Engineering interface levels ... 20	
4.	 AOS GUI .. 21	

4.1.	 Starting the GUI ... 21	
4.2.	 Status information display ... 21	

4.2.1.	 Connection to the AO system ... 22	
4.2.2.	 Overall AO system status .. 23	

4.2.3.	 Wfs status and commands ... 24	
4.2.4.	 Adaptive Secondary status .. 24	
4.2.5.	 Adaptive Secondary on/off/set/rest ... 25	
4.2.5.1.	 Safety locks .. 26	
4.2.6.	 Command execution reporting .. 26	

4.3.	 Command GUI ... 26	
4.3.1.	 AO commands ... 27	

5.	 Engineering GUIs ... 28	
5.1.	 Starting the Engineering GUIs ... 28	

6.	 Wfs board status GUI .. 29	
6.1.	 Starting the GUI ... 29	
6.2.	 GUI description .. 30	

7.	 Wfs Arbitrator GUI ... 30	
7.1.	 Starting the GUI ... 32	
7.2.	 GUI description .. 32	

7.2.1.	 Status indicators .. 32	
7.2.2.	 Startup/Shutdown commands ... 32	
7.2.3.	 AO parameters .. 33	
7.2.4.	 AO loop open/close/pause .. 34	
7.2.5.	 Rotator tracking ... 35	
7.2.6.	 Camera lens tracking ... 35	
7.2.7.	 ADC tracking .. 36	
7.2.8.	 Anti drift .. 36	
7.2.9.	 Dark frame and slopenull acquisition ... 36	
7.2.10.	 Disturbance ... 36	
7.2.11.	 Offsets ... 37	
7.2.12.	 WFS displays .. 38	
7.2.13.	 CCD display .. 38	
7.2.13.1.	 Controls .. 39	

8.	 WFS Hardware GUI ... 40	
8.1.	 Starting the GUI ... 40	
8.2.	 GUI description .. 40	

8.2.1.	 Power controller .. 41	
8.2.2.	 CCD39 .. 42	
8.2.2.1.	 Status .. 42	
8.2.2.2.	 Controls .. 43	
8.2.3.	 CCD47 .. 44	
8.2.4.	 Filter wheel #1 .. 44	
8.2.5.	 Filter wheel #2 .. 45	
8.2.6.	 Status check ... 45	
8.2.7.	 Temperatures ... 46	
8.2.8.	 Tip-tilt ... 47	
8.2.9.	 Tip-tilt low level .. 49	
8.2.10.	 Pupil rerotator ... 49	
8.2.11.	 Cube stage ... 50	
8.2.12.	 Cube rotator ... 51	
8.2.13.	 Bayside stages ... 52	
8.2.13.1.	 Displays .. 53	
8.2.13.2.	 Controls .. 54	
8.2.14.	 Source lamp ... 54	
8.2.15.	 Camera lens ... 54	
8.2.16.	 ADC wheels #1 and #2 ... 55	

8.2.17.	 ADC high-level ... 56	
8.2.18.	 Board setup ... 57	
8.2.19.	 System tests ... 59	
8.2.20.	 Quick selection .. 59	

9.	 AdSec operation .. 60	
9.1.	 Safety Remarks .. 60	
9.2.	 Quick start with AOS GUI (from BP4 built ahead) ... 61	
9.3.	 Quick start with Engineering GUI ... 63	
9.4.	 Status indicators ... 65	
9.5.	 Quick recovery from Failure .. 65	
9.6.	 Adaptive Secondary startup and shutdown .. 66	

9.6.1.	 With Engineering GUIs .. 66	
9.7.	 More on GUIs .. 67	

9.7.1.	 AdSec Mirror GUI .. 67	
9.7.2.	 AdSec Housekeeper GUI .. 68	

9.8.	 Housekeeper configuration files .. 74	
10.	 Low-level GUIs ... 74	

10.1.	 System processes GUI ... 74	
10.2.	 Variable inspector tool ... 75	
10.3.	 Text-based tools ... 76	

10.3.1.	 Consumer .. 76	
10.3.2.	 Log files .. 76	
10.3.2.1.	 Log file archiving ... 77	
10.3.3.	 Telemetry files .. 77	

11.	 Common tasks .. 77	
11.1.	 System preparation ... 77	

11.1.1.	 Using the AOSGUI .. 77	
11.1.2.	 Using the Arbitrator GUIs ... 77	

11.2.	 System shutdown after observation ... 78	
11.2.1.	 Using the AOSGUI ... 78	
11.2.2.	 Using the Arbitrator GUIs ... 78	

11.3.	 Seeing limited observation ... 78	
11.4.	 AO observation sequence ... 78	

11.4.1.	 PresetAO ... 79	
11.4.1.1.	 Error conditions and recovery .. 79	
11.4.2.	 AcquireRefAO .. 79	
11.4.2.1.	 Error conditions and recovery .. 80	
11.4.3.	 StartAO ... 80	
11.4.3.1.	 Error conditions and recovery .. 81	
11.4.4.	 PauseAO/ResumeAO .. 81	
11.4.4.1.	 Error conditions and recovery .. 81	
11.4.5.	 OffsetAO ... 81	
11.4.6.	 Other failure modes ... 81	
11.4.6.1.	 AdSec safety fault .. 81	
11.4.6.2.	 Hardware failure .. 82	

12.	 Calibration procedures ... 82	
12.1.	 Interaction matrix calibration ... 82	

12.1.1.	 Preparation .. 82	
12.1.2.	 Measurement parameters .. 82	
12.1.2.1.	 Modal basis .. 82	
12.1.2.2.	 WFS CCD binning ... 83	
12.1.3.	 Modal history generation .. 83	

12.1.4.	 Interaction matrix measurement .. 84	
12.1.5.	 Reconstructor matrix generation ... 87	
12.1.5.1.	 Iteration .. 87	

13.	 Saving diagnostic data ... 88	
13.1.	 Data format description .. 88	
13.2.	 Optical Loop Diagnostic GUI .. 90	

14.	 Elaboration library (elab_lib) ... 91	
15.	 Configuration files ... 91	

15.1.	 File format .. 91	
15.2.	 MsgD configuration file ... 92	

15.2.1.	 Configuring peering .. 92	
15.2.2.	 LBT setup .. 92	
15.2.3.	 LTB configuration files ... 93	
15.2.4.	 How to check if peering works correctly .. 93	

15.3.	 Common keywords .. 93	
16.	 Configuration keywords ... 94	
17.	 Calibration files .. 104	
18.	 Table of wfs, adsec and AO status values and commands accepted 104	

18.1.	 Wfs command table ... 104	
18.2.	 AdSec Command table ... 106	
18.3.	 AO Command table ... 106	

Modification Record

Version Date Author Section/Paragraph
affected Reason/Remarks

1.0 19 Nov 2015 A. Puglisi
First release of the
document as part of the
FLAO document package

1.1 25 Aug 2016 A. Puglisi, F. Rossi
Added sections 1,2
Modified sections

13,15,17

Integrating relevant content
scattered in other
documents.

1.2 26 Aug 2016 A. Puglisi
Modified sections
14, 16, 17. Fixed

layouts in section 2.

Added description of
diagnostic data format,
description of configuration
files and several
configuration keywords.

1.3 6 Sep 2016 A. Puglisi, F. Rossi
Added section 1.6,
modified section

1.4

Integrated data backup setup
instructions, added note
about installation of
portmap.

1.4 26 Sep 2016 A. Puglisi Detailed section
16.2 MsgD peering.

1. OS installation and configuration
OS installation and configuration, following the steps described in the following paragraphs, must
be done with root privileges.

Install selecting the "software development workstation" setting. This will install most required
packages automatically. After the installation from a distribution media, a full update is suggested.
The list of RPMs after OS installation + upgrade is in:

• rpmlist-centos6.txt for CentOS 6.x

• rpmlist-centos7.txt for CentOS 7.x

1.1. Network configuration

• Put in /etc/hosts the addresses of the devices as specified in IpNumbers.
• The firewall configuration must allow network packets from the BCU's. The easiest way is

to declare the ethernet interface of the BCU subnet as trusted.

1.2. Kernel parameters

In order to full configure the Adaptive Secondary it's needed to expand (if not) the shared memory
size provided by the Operating System.
To check if there is enough shared memory you can write (from root):

sysctl -a | grep shm

and look for the lines:

kernel.shmall = 131072

kernel.shmmax = 536870912

If you have values for kernel.shmall and kernel.shmmax have lower values, please
change /etc/rc.d/rc.localfile adding the two lines:

sysctl -w kernel.shmall=131072

sysctl -w kernel.shmmax=536870912

This will set the values at reboot. You may also give the commands at a command propmpt for
immediate effect.

1.3. Add non-default repositories
Some packages (mainly related to Qt version 3) are not available in the default CentOS6.x
repository, You must add both the epel and the atrpms repositories to the yum list as shown below:
EPEL CentOS 6

wget http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-

8.noarch.rpm

rpm -Uvh epel-release-6-8.noarch.rpm

ATRPMS You must add a file: /etc/yum.repos.d/atrpms.repo with the following content:

[atrpms]

name=Red Hat Enterprise Linux $releasever - $basearch - ATrpms

failovermethod=priority

baseurl=http://www.mirrorservice.org/sites/dl.atrpms.net/el$releasever-

$basearch/atrpms/stable

enabled=1

gpgcheck=0

EPEL CentOS 7:

http://dl.fedoraproject.org/pub/epel/7/e/epel-release-7-5.noarch.rpm

1.4. Add Zeroc-ice repository
Note: Ice 3.6 which is the latest available at the moment of this writing seems not to provide RPMs
for python support. Thjere is a python package available from PYPI, but only for python 3. We
currently choose to develop against Ice 3.5
The easiest way to retrieve the code is to add the proper file to the yum directory as follows:
CentOS 6.x:

cd /etc/yum.repos.d

sudo wget https://zeroc.com/download/Ice/3.5/el6/zeroc-ice-el6.repo

CentOS 7.x:

cd /etc/yum.repos.d

sudo wget https://zeroc.com/download/Ice/3.5/el7/zeroc-ice-el7.repo

1.5. Install additional packages
The following are required packages from the CentOS distribution:

yum install qt-devel PyQt gmp-devel pyfits qt3-config kdelibs3-devel libXpm-

devel cfitsio-devel lrzsz

Depending on the initial selection of features when installing CentOS, it might be necessary to
install some the following packages:

yum install gcc-c++ subversion boost-devel ncurses-devel python-devel

readline-devel armadillo-devel mysql++-devel openmotif-devel xterm

Then we need the ICE packages:

yum install ice ice-libs ice-c++-devel ice-python ice-python-devel

Note: the FLAO supervisor build procedure requires that a "version independent" link is created as
in the following example (Note: make the link to the actually installed Ice version):

 ln -s /usr/share/Ice-3.4.2 /usr/share/Ice

1.6. Install IDL
You must follow directions provided by IDL vendor. Current tested version is IDL 7.1, but other
releases may work also.

1.6.1. IDL related notes
Note 1: do not forget to install/configure the license
Note 2: make sure that the “portmap” program is installed (it is not on Centos7 default distribution):

 sudo yum install portmap

Note 3: Under CentOS 6.x the idlrpcserver can only be started with root privileges. As an
alternative Exelis suggests to also specify the port as follows:

 idlrpc -port=0x20001000

This seems not to work in all circumstances. We found more stable a different solution:
• Change to root the ownership of the idlrpc executable and declare the same file setuid:

chown root <idl_rpc_executable>

chmod +s <idl_rpc_executable>

The location of the executable file depends on the IDL release. The FLAO installation procedure
has a tool to find where IDL is installed, so you can delay this step after the preparation of the
installation environment described below.

1.7. Add shared libraries to the runtime path
Create library path files as follows (Note: the IDL path may vary):

echo /usr/local/qwt-5.1.2/lib > /etc/ld.so.conf.d/qwt.conf

echo /usr/local/exelisvis/idl71/bin/bin.linux.x86_64 >

/etc/ld.so.conf.d/idl.conf

Then refresh the path:

/sbin/ldconfig -v

1.8. Support for NFS mounts

• The ADSEC server must be set to export via NFS the directory /local/aomeas to the WFS
server

• The WFS server must NFS mount the directory /local/aomeas exported by the ADSEC
server.

Note 1: In order to allow proper access to files the flao user account and other accounts used for
development should have the same UID on the two servers.
Note 2: To allow the expected propagation of UID in NFS mounted filesystems the
option vers=3 must be used in file /etc/fstab of the mounting client.

1.9. User accounts

The production FLAO software will run from the account flao. This account must not be used for
any software development whatsoever.
Software tests and any other maintenance operation will be performed from any other suitable user
accounts.

1.9.1. flao account configuration

The flao account must have read/write access to the FLAO working directories:
/local/aolog
/local/aomeas (Note: this is a real directory on ADSEC server and is NFS mounted on the WFS
server.
The two directories must be created in advance and must have proper owner and permissions
(suggested owner:group = flao:flao, suggested permissions: drwxrwxr-x)

1.9.2. Development and maintenance account configuration

Development and maintenance user accounts must have read/write access to the
directory /local/aomeas. (Suggestion: add user accounts used for development to the flao group)

1.10. 4D and IDL
To use the 4D PhaseCam 4020 with the IDL wrapper:

• Add the PYRO_CONFIG_FILE environment variable (i.e equals to
$(ADOPT_ROOT)/conf/left/Pyro_Client.conf)

• Set the variable PY_VER in Makefile.gen

2. Software installation

2.1. Bulding a test version of FLAO Supervisor
The FLAO Supervisor can (and must) be built and tested from any convenient account which will
not be used for the production installation. The account needs (and must have) only normal user
privileges. Here follows the description of main steps.

2.1.1. Checkout FLAO Supervisor source tree and prepare for building
You must checkout from the proper SVN repository to get the FLAO version you want to install
into any convenient directory. The following example gets the source tree from the SVN trunk and
checks it out onto ./source (You have to specify an authorized username and you'll be prompted for
a password):

svn checkout

"svn+ssh://username@adopt.arcetri.astro.it/aogroup/svn/AOSupervisor/trunk

source"

cd source

Then you must set up the environment to allow compilation:

python prepare.py

make

source flao_environment.sh

The prepare procedure creates some working directories on your HOME checks the availability of
IDL and creates the file flao_environment.sh with the environment definition required for the
compilation of FLAO Supervisor.
You may want to add the source command to your environment setup procedure at login
(usually .bashrc) to have it executed at every login.
Note: If the prepare.py procedure has executed correctly, you now can find the location of IDL
executable files as follows:

echo $IDLLIBDIR

And you can modify idlrpc properties as directed above (see paragraph on IDL)

2.1.2. Building and installing the source code
NOTE: please be sure you have sourced the environment definition
procedure flao_environment.sh before attempting to build the Supervisor.
The FLAO Supervisor build process is in four steps:

1. Build the contributed software:

cd $ADOPT_SOURCE/contrib

make (see note below)

sudo make install

2. Compile and install the Supervisor

cd $ADOPT_SOURCE

make

make install

Note: verify that the install procedure has set proper ownership (root) and permissions (setuid) to
the following executables: mirrorctl, masterdiagnostic

2.1.3. Installing configuration ad calibration data
Calibration and configuration data are maintained in a different SVN repository. To install them
you must first checkout the latest version onto a suitable directory:

svn checkout

"svn+ssh://username@adopt.arcetri.astro.it/aogroup/svn/AOSupervisor/confcali

b confcalib

Then to install configuration and calibration files:

cd .../confcalib

make install_conf

make install_calib

2.2. Tools for automatic installation, deployment and usage

In the following page we resume the usage of procedures to install FLAO software, deploy on the
AdOpt servers and start stop the software subsystem.

The management of FLAO software is performed by three procedures (which can be found at the
root of the source code directory tree as checked out from the SVN repository.

• prepare.py. Environment setup for creating an installation to be used for software
development and tests. The environment is suitable to run a single subsystem
(adsec/ wfs, right / left).

• deploy.py. To deploy a runtime build of FLAO software onto the four subsystem servers.
The deployed build is named TEST and is suitable for running the AO system at the
telescope. The same procedure will be used at the end of tests to release (freeze) the build
after testing.

• flao.py. Procedure to be used by the TO to manage the FLAO software, i.e.: select an
available build, start/stop processes and the like. This procedure is intended to be usable as a
standalone tool, i.e.: it does not need any other FLAO software component and can be run
on any computer with an SSH access to the FLAO servers.

Here follows a detailed description of the procedures and their use.

2.2.1. prepare.py
The purpose of the procedure is to setup a proper environment for FLAO software development
(and/or maintenance) and is usually run once after cyhecking out a fresh version of the FLAO
source code. Here follows the help page which comes out with python prepare.py.

 FLAO Supervisor environment setup procedure. Version 2.4 L.Fini, April

2015.

Usage:

python prepare.py check Check environment

python prepare.py make Create environment

python prepare.py set adsec|wfs left|right Set installation target

This procedure operated on the local environment to be used for build and

tests. The actual installation of "science ready" FLAO system must be done

with:

python deploy.py

The procedure provides three subcommands:

• make. The make subcommand creates (or checks) the environment for development, more in
details:

o Creates local runtime directories: ~/aoroot, ~/aolog, ~/aomeasures.
o Creates a private/public key file pair to be used by ssh and stores them

into ~/.ssh directory of the current user.
o Creates an identity code for the specific build.

o Creates a bash compatible file for setting up environment
variables: flao_environment.sh==

The environment definition file must be explicitly executed to

take effect. If desired it can be executed from the bash startup

procedure (usually =~/.bashrc=). This is enough to be able to make and install
the FLAO code, configuration and calibration files.

Note 1: when installing and running the development build, executable, configuration
and runtime files are all stored in users' specific directories.

Note 2: In order to be able to execute the FLAO software, the specific server identity
(i.e.: adsec / wfs and left / right) must be established with the setsubcommand.

• check. The check subcommand verifies the environment to check that it is properly set for

compilation and installation of the FLAO software.

• set. The set subcommand defines the specific identity of the current build so that it can
operate as one of the AdOpt servers (i.e.: either as adsec or as wfs and with the required side
(right or left).

The effect of the procedure is to create the required symbolik link in the ADOPT_ROOT
runtime directory tree and to generate a new version fo the environment setup file
flao_environment.sh suitable for running the code with the proper identity.

Note: the environment setup procedure must be explicitly executed in order to have effect.

2.2.2. deploy.py

The deploy procedure has the purpose to deploy all required runtime files onto the four AdOpt
servers. The procedure assumes that the servers have been already configured for the purpose. Each
server must have an account flao which will be used for software deployment and to run the FLAO
software.
The procedure is intended to be launched from the root of the FLAO software source tree after
properly setting the environment as defined in the flao_environment.sh file generated
by prepare.py. Moreover the full software generation sequence: make, make install, make
install_conf and make_install_calib must have been completed.
Here follows the relevant items from the help page as displayed by python deploy.py:

 FLAO Supervisor deployement procedure. Version 1.6 L.Fini, May 15, 2015

Usage:

python deploy.py [-v] command [args]

-v: Verbose command mode (for debug)

Commands:

 key: Send SSH public key to targets (to be done once)

 rel: Release the TEST installation

 test: Deploy a test installation (possibly overwriting a previous one)

The procedure provides four subcommands:

• key. Transmits the ssh public key specific for FLAO management to the four AdOpt
servers. Usually this will require to specify the password defined for the flao user on the
four servers. This operation must be done once, before a build is deployed for the first time.

• test. Deploy current build as TEST build. All the required files will be copied onto proper
directories on the four targets and required links will be created. The deployment can be
repeated, in which case the new build is written over the previous one.

Note: After the deployment the current setup of server is not modified, i.e.: the previously
active build (if any) is still active. The selection of active build can be done with
the flao.py procedure.

• rel. Releases the TEST build as an science ready build. The name is generated
automatically and is of the form: 2105X (current year plus a single letter).

• lnk. Redoes the links in the specified build (for test purposes)

The deploy.py also provides a copy of commands provided by flao.py.

2.2.3. flao.py

This procedure is intended to be used by Telescope Operators to manage the runtime FLAO
software system. For this purpose it can be used standalone on any computer provided with a
standard python (2.x) installation and allowed to connect via ssh to the FLAO servers.

Note: because the procedure spawns standard unix commands and requires an X11 server, it is not
supported in MS Windows environments (and has never been tested on Mac OS).
Here follows the help page obtained with python flao.py:

flao.py Vers. 1.3 Luca Fini, 25 May, 2015

This file contains standalone functions to manage the FLAO

supervisor procedures.

Usage:

 python flao.py [-v] command [options]

 -v: Verbose mode (for debug)

Housekeeping commands:

 env node Show environment at remote node

 list Show available builds

 set build Set active build

 show Show active build

 targets Show the names of AdOpt servers and their roles.

AO commands:

 start adsec|wfs r|l Start the specified subsystem

 stop adsec|wfs r|l Stop the specified subsystem

 check adsec|wfs r|l Check the specified subsystem

 eng adsec|wfs r|l Starts the engineering GUI on the specified

subsystem

2.2.3.1. Housekeeping commands

To be used for various check of the build installations.

• env. Show FLAO related environment at given server (for debug purposes)
• list. List available builds.
• show. Show currently active build
• set. Set the specified build as active
• targets. List the AdOpt servers and their roles.

2.2.3.2. AO commands

To be used for managing the FLAO Supervisor Software.

• start. Start the specified subsystem (e.g.: start adsec right)
• stop. Stop the specified subsystem.
• check. Check the specified subsystem
• eng. Start the engineering GUI of specified subsystem.

2.3. Implementation Notes

2.3.1. AdOpt servers
The procedures described above have the specification of AdOpt servers and their roles built in. If
server names will change in the future, the related tables into the file flao.py must be changed
accordingly. The relevant table name is: MTGRAHAM_HOSTS.

2.3.2. Runtime accounts on AdOpt servers
The procedures rely on proper configuration of a user account on the four Adopt servers. The userid
must be: flao, with any suitable password. A specific public key will be stored in the .ssh directory
of the account when using the key subcommand of deploy.py procedure. After that all remote
operations will be done using the key, i.e. without the need to specify a password.

2.3.3. More details about deploy.py
The deploy.py procedure has some more options useful for developers and debuggers. Here follows
the additional help output which is shown with: python deploy.py -h

ADDITIONAL INFO FOR DEVELOPERS

The procedure accepts an additional option:

 -a: select a list of target servers available at Arcetri to be used for

tests instead of the servers used for science ready operations.

The procedure also accept additional commands:

 fake: Make a FAKE build (for debugging)

 lnk: Redo build links

Note: The FAKE build just contains a fake implementation of the FLAO process launching python
scripts.

2.3.4. More details about flao.py
The flao.py procedure has some more options useful for developers and debuggers. Here follows the
additional help output which is shown with: python flao.py -h

 ADDITIONAL INFO FOR DEVELOPERS

The procedure accepts an additional option:

 -a: select a list of target servers available at Arcetri to be used for

tests instead of the servers used for science ready operations.

2.4. Configuring AO data backup

There are two levels of data mirroring active at LBTO:

• Local data mirroring: from server internal disks to local shared SAN disks.
• Remote data mirroring: from SAN disks to NAS in Arcetri (not yet finished)

Each level provides for mirroring log files and AO data

Log files:

adsecdx /local/aolog

/ao-data/adsecdx/aolog

wfsdx /local/aolog

/ao-data/wfsdx/aolog

adsecsx /local/aolog

/ao-data/adsecsx/aolog

wfssx /local/aolog

/ao-data/wfssx/aolog

Calibration data:

adsecdx /local/towerdata/adsec_data

/ao-data/adsecdx/adsec_data

adsecsx /local/aomeas/adsec_calib

/ao-data/adsecdx/adsec_data

Data mirroring is performed by the archiver.py procedure. This procedure is designed to be
regularly run (for example once a day) from a crontab file. Each of the four AO computers should
have this line in their crontab file:

MM HH * * * <YOUR_PATH_TO_ADOPT_ROOT>/py/archiver.py –r

Where MM and HH is a suitable time for data backup (usually, in the middle of the day, in order to
avoid network traffic during the night), and the path should be set in order to point to the current
AO software installation. The “-r” option tells the procedure to execute all the configured backup
jobs.

Further information on the archiver.py procedure, how to configure backup jobs, etc. is available in
the archiver.py file itself as a Python docstring.

3. Software overview

3.1. Control computers

The FLAO software runs on two workstations, called wfsdx and adsecdx, dedicated respectively to
control the WFS and the Adaptive Secondary. These workstations are AO-specific and are not part
of the TCS server farm, but are accessible via ssh from any TCS machine or operator/observer
workstation. The software runs on these workstations as user AOeng.

3.2. Complete start/stop/restart

The FLAO software is not a single program, but a collection of processes dedicated to hardware
control, plus several more processes which coordinate their actions to perform most AO operations.
All processes are normally always running, but it may happen that the software must be shutdown
and/or restarted (for example, in case of computer power failures).
A few commands have been implemented on the two workstations to start and stop the complete list
of processes. These are:

• w_start (on wfsdx) to start all the wfs-related processes
• w_stop (on wfsdx) to stop all the wfs-related processes
• w_restart (on wfsdx) to execute a stop followed by a restart
• w_check (on wfsdx) to check whether the wfs software is running

• adsc_start (on adsecdx) to start all adsec-related processes
• adsc_stop (on adsecdx) to stop all adsec-related processes
• adsc_restart (on adsecdx) to execute a stop followed by a restart
• adsc_check (on adsecdx) to check whether the adsec software is running

All these commands are text-based and can be issued by any text terminal on the control
workstation. They will report the execution status and any errors which may arise. Multiple start
commands will cause no harm.

The two software sets (wfs and adsec) are in constant communication but are independent and can
be stopped/started separately in any order.

3.3. Starting order

The correct starting order for the complete FLAO software is:

1. AOS (TCS module) should be up and running before starting the AdSec or WFS software
a. If the AOS is not running at during startup of the AdSec or WFS software, there is

the risk that elevation or rotation information is not correctly propagated to the
FLAO system

2. Start AdSec with the adsc_start command (on the AdSec computer) and wait until the script
has finished.

3. Start the WFS software with the w_start command (on the WFS computer) and wait until
the script has finished.

Once all the software has been started up, restarting one of the three sets (leaving the other two
running) should not cause malfunctions. However partial restarts are not recommended for normal
operation.

3.4. Overall software scheme

The following diagram gives a general description of how the AO software is structured:

Note the various horizontal levels: AOS, Arbitrator, Hardware control.

The following paragraphs give a short description of the various software components, including
the three levels detailed above.

3.4.1. System processes

The lowest (and usually invisible) level is composed by the system processes which perform all
housekeeping and message-passing tasks, and which maintain the overall AO status. A detailed
knowledge of these processes is not required except for debug purposes, since at this level all
operations are automatic.

However a list of the fundamental processes follows:

• MsgD-RTBD (message daemon and real-time database): one copy for each workstation is
running. Manages message passing between all the other processes, maintains a central
variable repository (similar to the telescope Data Dictionary), and manages shared memory
buffer for quick transfer of sizeable volumes of diagnostic data. Any kind of problem with
the MsgD is usually fatal to the AO system, requiring a complete restart.

• MirrorController: the name is slightly misleading since this is the main hardware-
communicator process also for the WFS. Manages communication with the Microgate
BCUs onboard the Secondary Mirror and the WFS.

• MasterDiagnostic: manages the diagnostic data stream coming from the AO hardware
• Pinger: keeps an eye on the AO network and signals if something goes offline.

3.4.2. AdSec control processes

The actual AdSec control program is written the IDL language and is managed by the IdlCtrl
process. The IdlCtrl allows command-line like access to the IDL control process for debug

purposes, but the usual method of controlling the mirror is to use high-level interfaces like the
AdSec Arbitrator (see chapters 3.4.4 and chapter 9). Various other processes handle housekeeping
details of the mirror hardware, and perform continuous surveillance of the mirror safety. These
safety mechanisms can shut down the mirror at any time, either in seeing limited or AO
observations, if they detect some unsafe condition in the mirror shape or forces.

3.4.2.1. IDL issues

The use of IDL code requires an IDL license to be always available. Usually this is implemented
with an IDL license server, to which the IDL program connects to verify that license validity. If this
license server is not working or otherwise unavailable, the IDL program will not start (or stop in a
short time if it was running). Failure of the IDL license server will cause the Adaptive Secondary to
shut down for safety, and will cause some malfunctions, but not complete shutdown, on the WFS
software.

3.4.3. WFS control processes

The WFS system does not have a single main hardware control process like the AdSec, but is
instead distributed into a number of processes, each of which takes care of controlling a single
hardware device. The coordination is then done in the Wfs Arbitrator process (see next chapter).
IDL is used sparingly, but similar license problems exist as in the AdSec software.

3.4.4. Arbitrators

Coordination at the subsystem level (wfs and adsec) is done by the Arbitrator processes. The
Adaptive Secondary has its own Arbitrator, as the WFS has. The Arbitrator hides the actual
hardware implementation, and instead makes available a few high-level commands which
implement the more common AO operations. The Arbitrator GUIs are the main interface to the AO
system during engineering operations.

3.4.5. AOS

The AO system is interfaced to the rest of the telescope through the AOS (AO Subsystem). This is a
normal TCS subsystem running on the TCS server farm. The AOS exports the AO commands (a
dozen or so) needed to perform seeing-limited and AO observations. The AOS GUI is the main
interface to the AO system during normal observation.

3.5. Engineering interface levels

In order to setup, calibrate and debug the system, a number of engineering interfaces are provided.
Each interface works at a certain level, and is independent of the others. Thus, they can override
each other and care must be taken not to give conflicting commands. These conditions are noted
where possible in this manual.

As a general rule, an interface for a low-level process (for example the WFS hardware GUI) will
override commands given from a higher-level interface (for example, one of the Arbitrators).

It is therefore recommended to work with the highest available level. In addition, experience has
shown that the complexity of the system is such that, when using the low-level GUIs, many details

can be forgotten or overlooked even by experienced operators. Usage of the high-level interface
make things easier, because most things are performed by scripts which will ensure that all details
are properly taken into account.

4. AOS GUI

The AOS telescope subsystem makes available to the TCS and IIF all the AO commands needed for
observation. These commands are intended to be sent from either the TCS command sequencer or
the instrument observing block, but they can also be manually issued from the AOSGUI by the
telescope operator if needed.

4.1. Starting the GUI

The AOSGUI can be started from any TCS machine. The syntax is:

AOSGUI [side]

where [side] is either “left” or “right”. In case the side parameter is omitted, the left side is assumed
by default.

The two purposes of this GUI are:

• display AO status information
• provide an interface to send commands to the AOS

4.2. Status information display

The main AOS GUI window is a status display with all main AO parameters. The window will
become red if the AOS is not running properly.

4.2.1. Connection to the AO system

The connection status can have several values:

• DISCONNECTED: the AOS is not able to talk with the AO system. This may happen
because the Adaptive Secondary software is not running on adsecdx;

• NO ARBITRATOR: the AOS is able to talk with the AO system, but the AO arbitrator is
dwn or not answering. This usually means a problem on the network or on adsecdx;

• STANDALONE: the AOS is connected to the AO system, but the latter is indicating that it
is not ready to receive commands from the AOS.

• CONNECTED: the AOS is connected to the AO system and can send/receive commands.

4.2.2. Overall AO system status

The AO panel shows high-level parameters about the AO system:

• Mode: can assume several values:
o FIX-AO: seeing-limited (“fixed”) mode
o TTM-AO: tip-tilt only correction
o ACE-AO: full AO correction
o Other modes defined by other sensors (LBTI, ARGOS, etc).

• WFS: shows which focal station has been selected
• Status: shows the overall AO state machine status
• Modes: shows how many modes are being corrected
• Offload: shows the magnitude of the current tip, tilt and focus offload
• Skip frame %: shows the percentage of frames skipped in the last few seconds.
• Ready for SL/AO: shows whether the system is ready for seeing limited and AO operation
• Loop Closed: shows whether the AO loop is closed.
• Quality: quality indicator of the AO loop.

4.2.3. Wfs status and commands

The WFS status window shows the main WFS parameters for both FLAO and LBTI sensors.

• “Active” indicator on the top-right: the currently active WFS (either FLAO or LBTI) shows
the word “Active” in green. The other one shows “Idle” in light blue.

• Field viewer: shows either:
o The current technical viewer (ccd47) image
o The technical viewer image used in the last source acquisition
The compass right to the image shows the direction of the sky North

• Manual acquire: if checked, performs manual acquisition clicking on the technical viewer
image when an AcquireRef command is issued.

• CCD: show the current ccd binning, frequency (frame rate) and illumination level in counts
in the last 60 seconds. Binning may be zero if the ccd is off.

• On/off buttons and label: the two buttons ON and OFF control the power to the WFS unit.
The ON button, in addition to simply turn on the power, will also perform a setup of the
unit, thus taking some minutes to complete. The label can show either ON or OFF
depending on the WFS power status. The colored bar at the bottom represents the software
status and will be either green or red, the latter case signaling a problem in the wfs software.
There is currently no way of detailing or correcting such a problem from the AOS GUI, and
the engineering interface must be used instead (see chapters 3.2 and 10.1 for how to check
for software health)

• Status: shows the current WFS state machine status.

4.2.4. Adaptive Secondary status

The following status information is shown:

• Status: current AdSec state machine status
• Shape: name of the last loaded shape file (usually called a “flat”)
• Power: status (On or Off) of the three-phase power to the unit. Also controls power to the

hexapod
• TSS Status: status of the wind protection system
• Coils: status of the voice coils of the adaptive secondary.

4.2.5. Adaptive Secondary on/off/set/rest

The adaptive secondary status indicator, right of the button group, can have three values:

• OFF: power to the unit is off
• SAFE: unit is powered on and in safe condition (shell rested)
• SET: unit is powered on and shell is set for observation.

The colored bar at the bottom represents the software status and will be green or red, the latter case
signaling a problem in the AdSec software. There is currently no way of detailing or correcting such
a problem from the AOS GUI, and the engineering interface must be used instead (see chapters 3.2
and 10.1 for how to check for software health)

Four buttons control the power and shell status of the Adaptive Secondary:

• On: turns on the power to the unit and goes to SAFE status. Takes about a minute to execute
• Set: sets the shell and goes to SET status. Takes about two minutes to execute.
• Rest: rests the shell from the set position and goes back to SAFE status. Takes a few

seconds to execute
• Off: turns off the power to the unit and goes to SAFE status. Takes a few seconds to

execute.

4.2.5.1. Safety locks

In order to ensure the safety of the Adaptive Secondary, the shell can be set only if the following
conditions are met:

• Telescope elevation is 26 degrees or higher
• Swing arm is deployed
• Wind speed is under 8 m/s

If any of these conditions is not satisfied, the Set command will be refused. If the shell was already
set, it will be rested immediately. The safety feature is fast enough even in the worst case of the
telescope slewing down to zero degrees.
If for some reason any of these information do not reach the AO system (for example, the elevation
value stops updating), it will be treated as an out-of-range condition and trigger the safety lock.

The colored bar at the bottom of the status indicator represents the software status and will be either
green or red, the latter case signaling a problem in the AdSec software. There is currently no way of
detailing or correcting such a problem from the AOS GUI, and the engineering interface must be
used instead (see chapters 3.2 and 10.1 for how to check for software health)

4.2.6. Command execution reporting

When any command is started, messages related to the command execution and any errors
encountered will be shown in the lower part of the GUI.

4.3. Command GUI

Clicking on the “Command GUI” button at the top of the AOS GUI opens the Command GUI sub-
window:

4.3.1. AO commands

Each AO command has its own command button. Many command have parameters which appear
next to the corresponding button.
The parameter input boxes serve both as input and as output: when a command is sent by the IIF,
the corresponding parameters are written into the input boxes. Alternatively, the operator can input
the parameter manually (or modify the ones written before automatically) and send the command
manually.
Each command has a status indicator next to it which can have three values:

• Running: the command is currently executed
• Success: the command has completed successfully
• Failure: the command could not complete because of an error. Additional error information

is available on the main AOS GUI window.

Error conditions include the refusing of a command because it was not allowed in the current AO
status.

The progress bar at the bottom shows the command execution progress with respect to the
command timeout. It is not possible at the moment to interrupt a command during execution.

5. Engineering GUIs

Unlike the AOSGUI, all the AO engineering GUIs must be started from the AO control computers
(see chapter 3.1).

5.1. Starting the Engineering GUIs

A quick-start panel exists on both computers to start the relevant engineering interfaces. This panel
is called:

• wfseng on wfsdx
• adsceng on adsecdx

The panels can be started typing their name on any terminal (an X connection must be present).
Each panel shows the interfaces available for the system, which can be started clicking the “Start”
button next to their name. Unless otherwise noted, multiple copies of the interfaces can be started
without limitations.

WFS and Adaptive Secondary quick-start panels.

Alternatively, all interfaces can be started typing their name on a terminal. The correct program
name is noted in the description of the interface, and is resumed here:

• WfsControl (on wfsdx) starts the Wfs Arbitrator GUI
• AdSecControl (on adsecdx) starts the AdSec Arbitrator GUI
• AdOptControl (on adsecdx) starts the AO Arbitrator GUI
• wfshw.py (on wfsdx) starts the Wfs Hardware GUI

• BoardGui (on wfsdx) starts the board status display
• AdSecMirGui (on adsecdx) starts the mirror status display
• ccd_viewer.py (on wfsdx) starts the ccd viewer
• vartool_AO.py (on either computer) starts the RTDB interface (viewer/editor)

These GUIs are described in detail in the following chapters.

6. Wfs board status GUI

The Wfs board GUI shows the status of the various WFS devices.

6.1. Starting the GUI

The WFS Board Status GUI can be started from the wfseng panel (see section 5.1), or from a
terminal on wfsdx with the following command:

BoardGui

6.2. GUI description

The GUI is a read-only display of the position of the various WFS devices. For each device, only
the most relevant information is shown (e.g. filterwheel position, ccd binning and integration
frequency, etc). The Cube icon at the top moves to show the actual physical position of the cube
beam splitter, and has a red outline when it is in the reference source beam path. The rectangular
display at the bottom is a map of the focal plane FoV available to the WFS stages, and the current
position is shown with a green ‘X’. When the stages are moving, a red circle is also drawn to
indicate the target position. On the lower left, a resume of telescope position and rotation is shown.

7. Wfs Arbitrator GUI

The WFS arbitrator GUI is used to send commands to the WFS Arbitrator, which provides high-
level commands to manage the WFS like startup/shutdown procedures, wfs configuration, dark
frame acquisition, etc. Commands are implemented in the WFS state machine as described in
CAN687f400.

7.1. Starting the GUI

The WFS Arbitrator GUI can be started from the wfseng panel (see section 5.1), or from a terminal
on wfsdx with the following command:

WfsControl

7.2. GUI description

All GUI actions are implemented as one of the arbitrator commands described in CAN687f400.
This has several consequences:

• only one command can be executed at a time. To send another command, one must wait for
the previous command completion. The GUI will prevent the operator from sending
multiple commands, graying out all buttons while a command is executing

• Not all commands are available at all times, depending on the state machine status. The GUI
will either gray out buttons corresponding to unavailable commands, or display an error box
if the command could not be received.

• Commands parameters are validated before execution. If an out-of-range or otherwise
invalid parameter is entered, a “Validation failed” error will be displayed.

7.2.1. Status indicators

At the top of the GUI, the following status information is shown:

• Wfs Status: tells the operator in which state the WFS is at the moment, and therefore which
commands are available. Also, in the GUI commands which are not available at the moment
are grayed out.
Note: if the Wfs Arbitrator program is not running, or not correctly responding, the Status
will be “offline” and no commands will be executed.

• Last executed commands: shows the name of the last command executed by the WFS
arbitrator

• Command execution status: shows whether a command is executing at the moment, or the
result of the last command. When a command is executing, all GUI buttons are inactive.

7.2.2. Startup/Shutdown commands

Starting up the WFS requires turning on the various wfs devices in the correct order. This is
managed by the WFS arbitrator command “Operate”, that takes two arguments: a list of devices to
turn on (the “configuration”) and optionally a command file to setup each hardware device (the
“board setup file”). The configuration files are pre-determined by the programmer and are not
generally modifiable by the operator, while the setup files can be found in the WFS calibration
directory as described in section 17 and may be modified as needed. For correct operation from the
AOS, at least one setup file with the same name as the current instrument (e.g. “IRTC”) must be
present.

To startup the WFS:

• select the configuration in the drop-down box
• (optionally) select the setup file in the drow-down box, checking the “apply setup” checkbox
• press the “Operate” button.

Execution of the Operate command will often take several minutes.

To turn off the WFS:

• press the “Off” button

Execution of the “Off” commands takes a few seconds.

The startup sequence turns on and prepares for operation all devices in the configuration list.
Movements are homed, CCDs are configured to default values, etc.

7.2.3. AO parameters

The “parameters” section is used to configure the main AO-relevant parameters: ccd frame rate,
binning and tip-tilt modulation. These parameters are applied together.

• enter the desired ccd frame rate in the “frame rate” input box. Frame rate is in Hz and can
range from 100 to 1000.

• enter the desired binning in the “binning” input box. Available binnings are 1,2,3 and 4.
• enter the desired tip-tilt modulation in the “modulation” input box. This value will be the

modulation radius in lambda/D. Modulation radius can range from 0 to 6 lambda/D.

• Press the “Apply” button.

The WfsArbitrator will apply the new parameters and, if the ccd configuration is changed, take a
new dark frame using the filter wheel #1. Execution of the command will be either very short (less
than 1 second, if the ccd parameters are unchanged), or will take 20-30 seconds.

If the ccd or tip-tilt configuration is changed using the lower-level hardware GUI, the Wfs
Arbitrator may not realize this. To avoid problems, after using the hardware GUI, always reapply a
different value from the last command, to force the Wfs Arbitrator to reconfigure.

Note about the modulation: the modulation parameter is converted to tip-tilt voltage commands
using a lookup-table, found in a specific calibration file (see section 17), based on the ccd frame
rate. Not all modulation values are available at all ccd frame rates, for example at a frame rate of
1000 hz the maximum modulation radius is 3 lambda/D. In general, higher frame rates will prevent
to use the bigger modulation settings, but a precise specification cannot be given since it depends on
the details of the lookup table. The GUI will give an error to the user when an incorrect modulation
is entered.

During the setup, the ccd display may fluctuate wildly while the background is taken, and even stop
for a minute or so if the ccd binning is changed. This is normal and the display is not to be
considered valid until the command has completed.

7.2.4. AO loop open/close/pause

Four buttons manage the AO loop status. Because of the need of coordination between the two
systems, the Close and Open buttons will send commands to both the WFS and Adaptive
Secondary.

• Close: start sending slopes to the Adaptive Secondary. The secondary must have been
previously configured with the correct input port, reconstruction matrix, etc. The button first
sends a command to the Adaptive Secondary to configure it with the expected frame rate,
and then closes the loop on the WFS.
This button will also configure the Adaptive Secondary with the disturbance setting for
optical gain measurement.

• Pause: suspends the loop stopping the slopes. The secondary mirror remains freezed in
shape it had during the last loop iteration. A paused loop can be either resumed or stopped.

• Resume: resumes a previously paused loop. Before resuming, the illumination level on the
ccd39 is checked to verify that it similar to the one present when the loop was paused, and
the resume command may be refused if the illumination level is too low.

• Open: opens the loop stopping the flow of slopes to the Adaptive Secondary. After that,
sends a command to the Adaptive Secondary to inform it that no more slopes are expected.
If the “restore last shape” box is checked, the secondary mirror will re-apply the last shape it
loaded before closing the loop. Otherwise, the mirror will remain in the position it had
during the last loop iteration.

7.2.5. Rotator tracking

When enabled, the Wfs arbitrator will move the pupil rerotator to follow the telescope derotator and
keep stable the pupil image on the ccd39. The tracking is applied once per second and has a total
delay of 1-2 seconds, which gives an error <0.1 degrees in all observing conditions up to 87°
degrees of elevation. When first activated, or when the telescope is slewing, the tracking may take
some time to reach the correct position.

The pupil rerotator position is computed with the following formula:

rerotPos = derotPos/2.0 * rerotSign + rerotOffset + trackingOffset

The <derotPos> values comes from the AOS and is the DD derotator position. The <rerotSign> and
<rerotOffset> values are read from the Wfs Arbitrator configuration file, using the keywords
“RotatorSignBin1”, “RotatorOffsetBin1” and similar for the other binnings. If the Sign keyword is
missing, a sign of -1 is assumed.
The <trackingOffset> parameter is read each time from the RTDB and is intended to allow small
corrections by the operator.

This tracking is always activated by the AOS when starting an observation.

7.2.6. Camera lens tracking

When enabled, the Wfs arbitrator will measure the current pupil position using feedback from the
“pupilcheck” process, and move the camera lens to keep the pupil centers in a predefined position.
The status indicator has three values:

• disabled: tracking loop is off and camera lens is not moving
• enabled (not on target): tracking loop is on, but the pupils are off the predefined position,

and the camera lens will be moved to recenter them;
• enabled (on traget): tracking loop is on and the pupils are on the predefined position within

0.1 pixels; the camera lens will be left where it is.

Regardless of the “enabled” status, camera lens corrections are only applied during closed loop.
This happens because, in open loop, the pupils are too aberrated to have an accurate measure of
their position. A consequence of this is that, when the loop is closed, the indicator will temporarily
go to “not on target”, because the pupil position is only computed every four seconds, and it will
take one or two iterations before the actual pupil position is reflected in the target indicator. For this
reason, the first camera lens loop iteration is skipped by the WfsArbitrator after closing the loop.

This tracking is always activated by the AOS when closing a loop.

7.2.7. ADC tracking

The ADC tracking will follow the telescope elevation and field orientation moving the ADC wheels
to have the correct atmospheric dispersion correction. Operation is similar to the Rotator tracking,
except that instead of using a formula, the ADC position is computed using a lookup table found in
a specific calibration file (see section 17) based on the telescope elevation.

7.2.8. Anti drift

The antidrift loop tries to correct for temperature-dependent drifts of the ccd39 background levels.
It will do so checking the current background level outside the pupils (in the ccd corners), and
adjusting the current background frame so that the background-subtracted levels are zero. This is
done independently on the four ccd quadrants.
Since the BCU can lockup if the background frame is overwritten while the loop is closed, an
antidrift correction will temporarily stop the ccd integration, overwrite the background frame, and
restart the ccd integration. Because of the slow serial connection to the ccd, this will result in pause
of about 0.1 seconds. The antidrift correction will be applied at a maximum rate of 1 Hz, and will
slow down as the ccd temperature stabilizes.

7.2.9. Dark frame and slopenull acquisition

These buttons allow the operator to take a dark frame for either ccd, or a slope null frame. To take a
dark frame, enter the number of frames to average in the input box next to the button.
When the button is pressed, the filter wheel #1 is rotated to the “silver mirror” position (for the
ccd39 background), or to the “empty” position (for the ccd47 background). For the other two
buttons, no rotation occurs. After that, the ccd bias levels are equalized (see hardware GUI, section
8.2.2.2) the specified number of frames are integrated, averaged, saved on disk with a tracking
number, and sent to the correct BCU as the new background. The ccd display may fluctuate wildly
during integration.
The ccd39 background acquisition is a sub-procedure of the AO parameter apply command (see
section 7.2.3).

7.2.10. Disturbance

Disturbance application is used to manage the digital disturbance feature of the adaptive secondary.
The disturbance commands are loaded on the secondary BCUs, but their application is commanded
by the WFS with a bitmask sent together with the slopes. Therefore, to change the disturbance
setting, the system must be in closed loop. There are four possible settings:

• Disabled: no disturbance is applied
• Sync WFS: one disturbance frame is applied at each optical loop iterations
• Only OVS: disturbance frames are only applied on oversampled frames.
• All frames: disturbance frames are applied on both optical loop and oversampled frames.

The last setting allows the operator to have a disturbance “running” at a multiple of the optical loop
speed, for example the optical loop can be at 200 Hz while the disturbance is applied at 800 Hz.
Since oversampled frames are applied at a maximum rate of 890 Hz, this feature is only useful for
an optical loop speed up to 445 Hz. Over this speed, the disturbance can only be synchronous with
the AO loop.

The disturbance setting can be changed at any time, but will only be applied when in closed loop. If
changed in open loop, it will be applied at the first loop iteration.

7.2.11. Offsets

The WFS Arbitrator can execute XY and Z offsets moving the stages which support the optical
board. All offsets are specified in millimeters on the focal plane (for the XY offset) or along the
optical axis (Z). Offsets commands are relative to the current position.

Offsets can be executed regardless of the loop status, but care must be taken not to exceed the
adaptive secondary tilt or focus range if the loop is closed. By rule of thumb this means about 0.5
millimeters in either X or Y, and 5 millimeters in Z. If the low-order offload is active, the adaptive
secondary will offload these tilts to the hexapod in a few seconds, and the offset can be repeated
(this coordination is done automatically by the AOArbitrator when long closed loop offsets are
requested by the AOS).

XYZ stages are normally braked. The brake is opened when an offset is requested, and closed again
when it is completed. This can cause very small jitters (in the order or microns) in the actual stage
position. Multiple offset commands are applied using the target position, and not the actual stage
position, so that these errors are not accumulated.

7.2.12. WFS displays

From the WFS Arbitrator GUI, the two ccd viewers can be started pressing the “WFS Camera” and
“Acquisition camera” buttons (for ccd39 and ccd47 respectively). The display program is the same
for all ccds, with a few additional features for the ccd39

7.2.13. CCD display

• live indicator: the indicator can be either “Live” (green) or “Not live” (red). “Not live” only

means that the display is not receiving frames, and may result from a variety of causes. For
example, a “live off” display is normal while the ccd is changing binning.

• image: the image is always shown at a rate of 20 Hz (or slower if the ccd is going slower), to
avoid using excessive amount of CPU. This means that, at high AO loop frame rates, the
image is heavily decimated. Saturated pixels are shown in red, to avoid confusion with
pixels which are white due to lookup table effects.
The ccd39 image is rotated 90° from the raw one to correct for ccd orientation.

• Pupil positions (ccd39 only): radius, center X and Y position, and interpupil distance are
shown for each pupil. This information is refreshed every few seconds.

• Pixel value and position: when moving the mouse over the image, the pixel value of the
pixel under the mouse, and its X and Y positions, are shown. The zero position is in the
upper-left corner.

• Intensity value (ccd39 only): shows the total intensity value, averaged over the four pupils,
and rescaled to be in photons/subaperture/frame. This value is a running mean over the last
100 displayed frames (5 seconds), so can be incorrect in case of rapid fluctuations or while
the background frame is being acquired. This value is also incorrect the background frame is
missing or outdated.

• Slope rms plot: the plot is continously updated wi the current slope rms and shows the last
20-30 seconds of data.

• Stages on/off: this is a simple indicator to remind the operator that the stage motors are
enabled, and may compromise the loop injecting electrical noise. This can be an issue when
using the hardware GUI, but is automatically managed when using the AOS or Wfs
arbitrator GUI.

7.2.13.1. Controls

• magnification slider: changes the ccd display magnification
• amplifier slider: changes the display lookup table. Higher (towards the right) slider settings

cause the lookup table to shift towards low value pixels, while higher value pixels are
saturated to white.

• “show realtime pupils” checkbox: when checked, four red circles are drawn on the image to
show the current pupil position and diameter as calculated by the “pupilcheck” process.

• “show cloop pupils” checkbox: when checked, four red areas on the ccd are highlighted in
red to show the pixels selected for the AO closed loop. The illuminated pupils must coincide
with these areas

• “show slopes” checkbox: when checked, the ccd image is replaced with a slope map which
show the current slopes as calculated by the BCU. Two maps, for X and Y slopes, are
shown. The pixel value indicator shows the value of the slopes under the mouse cursor
position.

• “Save frames” button: opens an interface to save frames from the ccd.
• “Autocenter”/”Autofocus” buttons: start the automatic autocenter/focus scripts. These

scripts use the current ccd image as feedback and move the XY or Z stage to center the light
on the four pupils, or bring them into focus. Green arrows are drawn over the ccd image to
show the stage movement. The scripts will exit when a correct position is reached, signaled
by a small green circle display on the ccd image. The “Stop autocenter/focus” button can be
used to stop the scripts manually.

8. WFS Hardware GUI

The WFS hardware GUI allows low-level control of the wfs devices.
Warning: if the higher-level Arbitrators and AOS software are running, their command can conflict
with those sent by the operator. Always use the higher possible GUI level, unless a specific reason
exists.

8.1. Starting the GUI

The WFS Hardware GUI can be started from the wfseng interface or started from a terminal on
wfsdx with the following command:

wfshw.py

8.2. GUI description

The Hardware GUI has a list of devices on the left side. Clicking on a device name will display the
corresponding window on the right side. At the bottom, three displays help identify which WFS is
being operated on:

• Unit: identifies the WFS by name (may be W1, W2, etc.)
• Server: identifies the computer operating the WFS. Generally “localhost”, meaning that it is

the same computer where the GUI is running, but can be different as the GUI can run
somewhere else if properly configured.

• Side: shows the telescope side (either “RIGHT” or “LEFT”).

8.2.1. Power controller

(pictured in previous section)
This panel shows all the on/off switches in the wfs system. The switches can be controlled by
different hardware devices, and so some or all of them may be unreachable if the controlling device
is powered off. The GUI shows this condition graying out the on/off buttons, and marking “offline”
their status.
A minimum set of devices is kept always on, as long as the input 110VAC line is active. These are:

• the MiniMC fiber/copper Ethernet converter
• the internal 5-port Ethernet switch
• the left-box TS8 Ethernet/serial converter
• the PIC-based power board

Correspondingly, a few (on W#1) or most (on W#2) power switches are always available because
they are located on the PIC-based power board.

 A list of the switches and what they do follows:

• Main power switch: controls the internal power supply for CCDs and BCUs.
• Box fans: controls the fans on the electronics boxes covers.
• Flowerpot: controls the flowerpot board, which in turn will allow control of the cube and

reference lamp.
• Little joe fans: controls the fans on the little joe ccd controllers.
• Ccd39 and 47: controls the two little joe controllers.
• Filter wheels: controls the two filterwheels. The wheels will move to the home position

upon starting.
• ADC: controls the two adc wheel motors. The wheels will move to the home position upon

starting.
• Bayside stages: on W#1, controls the 110 V power supply for the stages motor. The stages

will not move and will need to be homed manually from their panel (see section 8.2.13.2)
• Pupil rerotator: controls the pupil rerotator. The movement will move to the home position

upon starting.
• Cube stage and rotator: controls the two motor controlling the cube position and rotation.

Both movements will move to the home position when starting.
• Lamp: controls the reference lamp on (an additional intensity control is available separately)

Four more switches control the “reset” and “program” lines of the two BCUs. The “reset” lines will
hold the BCU in reset status for as long as they are on. The “program” lines are sampled by the
BCU when starting (or when the “reset” line is turned down) to select one of two internal memory

banks from which to load their program. These four switches are not normally needed for operation,
unless a hardware problem on the BCU arises.

8.2.2. CCD39

The ccd39 panel shows the current ccd39 status and parameters, and allows the operator to change
those parameters.

8.2.2.1. Status

Can have the following values:

• NOCONNECTION: ccd controller is either turned off or not reacheable over the network
• CONFIGURING: configuration parameters are being loaded through the serial line
• READY: ccd controller is ready, but not integrating frames.

• OPERATING: ccd is integrating frames

8.2.2.2. Controls

When first starting, only the binning drop-down box is available, because the ccd must be
configured with one of the available binning. Selecting a binning from the drop-down box causes a
configuration program to start, running in a separate xterm to display debug information. While this
xterm is open, the hardware GUI is frozen. Binning configuration takes about 30 seconds.
Once a binning is configured, the other parameters are set to some default value and can be adjusted
by the operator.

Parameters are set from the panel input boxes and then applied together when the “apply settings”
button is pressed.

• Frequency/repetitions: either a frequency (frame rate) or “repetitions” number can be
entered. The little joe controller cannot integrate a specified frame rate, but has instead a
delay for integration with a minimum time defined by the frame readout time, plus a delay
computed as the number of “repetitions” multiplied by a base delay interval (variable for
each readout speed). When a frequency value is entered, the control program will
approximate it with the closest possible value as allowed by the current delay interval.
Typical errors range from a fraction of a Hz at low speeds up to 1 or 2 Hz at high speeds
(1000 hz or more). The maximum possible repetition number is 65535.
SAFETY WARNING: the tip-tilt mirror is often hardware-locked to the ccd frame rate (see
tip-tilt section). The ccd39 has the capability of going much faster than 1 Khz, thereby
entering the tip-tilt resonating frequency range and possibly breaking it. For this reason, the
GUI will refuse frequency settings over 600 Hz, and the Wfs Arbitrator GUI must be used
(the Wfs Arbitrator will perform the necessary safety checks and refuse unsafe settings).
However, the repetition value has no similar checks and using it, especially at binnings from
2 up, is dangerous as it can result in frequencies of 3Khz or more. Always use the frequency
setting and not the repetitions settings, unless you know what you are doing.

• Black levels: the four (ccd39) or two (ccd47) quadrants each have their independent bias
level, called “black level”. A higher black level corresponds to a lower pixel value for the
same illumination level. A black level “unit” corresponds to 20 counts, or about 10 photons.

• “Equalize quadrants” button: starts an automatic procedure to adjust the black levels so
that every ccd quadrant has an average level of 200 counts (prior to background
subtraction). The procedure takes a few seconds to converge. This button should be used
when ambient light, articificial illumination and internal wfs lamp are off, otherwise an
incorrect level will be reached. In addition, if the artificial illumination is flickering at 120
Hz, the procedure will not converge since the ccd is seeing a variable amount of light, and it
will giveup after a while.

• Temperature display: three temperatures are given: “case” is a sensor inside the electronics
case of the little joe controller. “Head” are two sensors on the ccd chip itself. The first
sensor has a lower limit of 19°C, the other two of -40 °C. Hence, during winter observation
they are often pegged to the lower limit.

• Background: shows the current dark frame loaded on the BCU, and allows the operator to
select another file and send it to the BCU.

• “Start”/”Stop” button: stars and stops ccd integration. Integration is started by default after
a binning is applied.

• “Live view” button: starts the ccd viewer described in section 7.2.13
• “Save” button: starts an interface to save frames from the ccd.

8.2.3. CCD47

This window is identical to the one for the ccd39, except for a few differences:

• the ccd47 has only 2 quadrants, so only 2 black levels are available
• available binings are 1,2,4 and 16.
• frame rates are much lower and the repetition setting changes little. Frame rate is essentially

fixed by the chosen binning.

8.2.4. Filter wheel #1

The filterwheel panel shows the current filter wheel status and position. The position is not valid
until the motor has been turned on and homed, and the GUI shows this graying out the position
display.

The movement is in “filters” unit (1.0 correspond to the angle between two filters) and can be either
absolute or relative:

• absolute movement is an offset from the home position.
• Relative movement is an offset from the current position

Position can be decimal, for example a movement to 0.5 will position the wheel halfway between
two filters.

The custom position buttons are dynamic and are built from the custom positions defined in the
filter wheel's configuration file. Clicking on those buttons will immediately move the filter wheel to
the custom position. When the filterwheel is on a position defined as custom position, the name will
be displayed along the numeric position (as in the screenshot above).

• “Abort movement” will stop any current movement of the filterwheel
• “Start homing” will start the home position search procedure. This is automatically triggered

when the filterwheel is powered up.

8.2.5. Filter wheel #2

This panel is functionally identical to the Filter wheel #1 panel.

8.2.6. Status check

This panel shows the status of all wfs devices. Status is either red or green. A green status means
that both the software and the hardware for the specified device is ready. In normal wfs operation,
everything is green

If the power on configuration was incomplete (as in this example, where the configuration was
excluding the ccd47), it is normal that the excluded devices appear in red.

8.2.7. Temperatures

Shows all the temperature readings collected from various parts of the wfs. Update rates vary from
once every few seconds to once every 30 seconds depending on the sensor. If a sensor does not
answer for more than a minute, “N/A” (not available) is shown. Sensors can also be not available if
the corresponding devices are off or otherwise unreachable.
The lower section controls the over temperature protection system: the PIC-based control board will
automatically shut the WFS off if any of the sensors goes over the specified thresholds. Two
different thresholds are available: one for the sensors on the electronics, and one for the water
intake and CCD temperature.

8.2.8. Tip-tilt

The tip-tilt panel shows both the current values and the input boxes for the requested values. All
requested values are applied when the “Set” button is pressed (empty values default to zero). The
tip-tilt is a three-axis device, but the control is done over two virtual axes that are remapped on the
three real axis.

• axis rotation: controls the orientation of the XY reference system
• amplitude: controls the overall modulation amplitude, specified in volts (0-10V)
• Frequency: controls the modulation frequency. If the “Sync with ccd” checkbox is set, this

value will be ignored (a zero is sent to the BCU), and the frequency will be synced to ccd
frame rate using the tip-tilt fiber.
Note: it is not possible to sync with the ccd frame rate when the ccd is turned off or
otherwise unavailable. This condition is detected and the checkbox will be unavailable in
this case.

• X and Y offsets: change the modulation center, from -5 to +5V, with zero being the nominal
range center. Either the input boxes or the sliders can be used. Slider changes are applied
immediately without pressing the “Set” button.
Note: When applying X and Y offsets, the tip-tilt controller may reduce the modulation
amplitude so that the maximum voltage applied does not exceed 10 V, as sum of offset plus

semi-amplitude. This is shown in the GUI as a reduction of the current amplitude with
respect to the requested value.

8.2.9. Tip-tilt low level

This panel allows individual control of the three tip-tilt axes. For each axis, amplitude, offset and
phase can be set independently, while the frequency is locked to be the same. The nominal offset
center here is 5 volts, and ranges from 0 to 10V.

8.2.10. Pupil rerotator

This panel commands the pupil rerotator and is functionally similar to the one of the filter wheel #1,
except that the movement unit is in degrees. Also, the pupil rerotator has a limit switch that will
prevent movement lower than zero degrees, or any other backward movement crossing a 360°
threshold. So, once the position has advanced over 360°, it will not go lower than that until the
movement is power cycled.

When using the AOS or WfsArbitrator, this condition is automatically avoided. Furthermore, the
rotator tracking is on at virtually all times, and it will continuously send commands, rendering this
panel basically useless until the tracking is stopped.

8.2.11. Cube stage

This panel commands the cube stage, which is a linear movement with two limit switches. Units is
in millimeters. Apart from this, it is functionally identical to the filter wheel #1 panel.

8.2.12. Cube rotator

This panel commands the cube rotator, which is a rotary movement without limitations on
movement. Unit is in degrees and precision of movement is on the order of 0.01 degrees. The panel
is functionally identical to the filter wheel #1 panel.

8.2.13. Bayside stages

8.2.13.1. Displays

The bayside stage panel shows the status of each of the three XYZ stages. For each stage a status is
reported:

• NOCONNECTION: stage is off or otherwise unreachable
• CONNECTED: stage is reachable, connection in progress
• OFF: stage is ready, motor disabled, brake set
• OPERATING: stage is moving and/or actively mantaining a position

Position display: the current position is shown, as an offset from the homing position. If the homing
procedure has not been performed, the position where the stage was when it was turned on is
assumed as zero.

Note that the X stage has a home position towards the left movement limit, and thus valid positions
range from 0 down to -120 mm. The Y stage has a home position towards the top limit, and valid
positions range from 0 down to about -80mm. The Z stage instead move from the home position up
to about 70 mm. These ranges are approximate, and depend on the exact positioning of the limit
switches.

Current display: the current adsorbed by the motor is shown in Ampere. An adsorption of 1 or 2
amperes is normal. If the display is stuck at 4 amperes, it means that some mechanical obstruction is
present and the current limiter is in action.

8.2.13.2. Controls

For each stage, the following checkboxes are available:

• “enable stage” this must be checked to allow the stage to move. Unchecking this checkbox
will cause the stage to stop immediately and brake in the current position

• “software limit” enforces the sofware movement limits, defined in the stage configuration
files.

• “limit switches” enables the electrical limit switches that prevent the stages from reaching
the mechanical movement limits. This is usually always enabled.

• “control always active” avoids braking the stage once a movement is done, allowing the
motor to actively keep the position. If the checkbox is activated before a movement, the
setting will be applied on the next movement. If unchecked while the motor is maintaining
a position, it will cause the stage to set the brake and stop there.

Other controls:

“Move” button: the move button will move the stage to the position specified in the main
inputbox. Only absolute positioning (offset from the home position) is available.

“Start homing”: starts the homing procedure. X stage homes towards the left limit (positive
coordinates), while Y and Z stages home toward the lower and backward limit (negative
coordinates).

8.2.14. Source lamp

This panel allows the operator to change the reference lamp intensity moving the slider. This is in
addition to the lamp on/off control described in section 8.2.1). The actual lamp intensity is
displayed as a percentage and will take a few seconds to follow the slider due to delays in the PIC-
based flowerpot controller.
Note: the lamp behavior is highly non-linear. At the lowest settings, the lamp is virtually off, then
ramps up quickly. Over 50% or so the lamp increases luminosity only marginally.

8.2.15. Camera lens

This panel controls the two axis of the cameralens. The cameralens outputs of the BCU are slaved
to the ones for the tip-tilt: if the tip-tilt has not been configured, the outputs are not enabled and the
cameralens is in the default rest position. Before using the cameralens, the operator must first set the
tip-tilt, even giving zero as amplitude and offset.

Once the outputs are active, the two sliders control the X and Y camera lens position. The current
position is shown, and the position can also be changed writing the new values in the two input
boxes and pressing Enter. This action will set both axes at the same time.

8.2.16. ADC wheels #1 and #2

These two panels control the two ADC prism wheels. The unit of movement is in degrees. Apart
from this, they are functionally identical to the filter wheel #1 panel.
When using the Wfs Arbitrator ADC tracking, the ADC position is continuously updated and this
panel cannot be used.

8.2.17. ADC high-level

This panel allows the control of the ADC as a function of two high-level parameters: dispersion
angle and axis orientation. There is a direct mapping of these two parameters to the ADC wheels
position.

When either of the Set buttons is pressed, both values are sent to the ADC controllers.
When using the Wfs Arbitrator ADC tracking, the ADC position is continously updated and this
panel cannot be used.

8.2.18. Board setup

The operator can save the current board configuration using this panel to save a “board setup” file.
A board setup is a text file containing commands to set the wfs movements positions. To save the
current configuration, enter a descriptive name in the top input box and press “save”. A text file will
be generated and saved in a predefined directory (see section 17), and shown in the list with the date
on which it was saved.
Clicking on a filename on the list will display its contents in the right box for inspection. To load a
board setup file, select it on the list and press the “Restore” button. An xterm will appear where the
script will execute.
Warning: if some devices are off, they will not respond to commands, and the xterm will wait for
their response with a timeout which may be quite long. It is safe to simply close the xterm, because
all commands are sent in less than one second, and the rest is only waiting for the devices to report
their status.

The following parameters are saved/restored:

• filter wheels #1 and #2 positions
• cube stage and rotator positions

• X, Y and Z stages positions
• Camera lens X and Y positions
• Tip tilt modulation amplitude, frequency and offsets
• ADC wheels #1 and #2 positions

8.2.19. System tests

This panel contains shortcut buttons to start various system tests scripts. Their output, when
available, is shown in the box below the buttons. The output text can be copied and pasted. The
available scripts are:

• ccd39 RON test: starts the ccd39 RON (ReadOut Noise) test. It will cycle the ccd between
the four available readout speeds, and report the results in the box below.

8.2.20. Quick selection

This panel contains a list of the available calibration files for the BCU (background frames and
slopenull frames), displays the currently selected file and allows the operator to select a different
file and send it to the BCU. Loading the file is immediate whether in open or closed loop. While
operational, use of the WfsArbitrator GUI for the background is recommended.

9. AdSec operation

9.1. Safety Remarks
The system is particularly sensitive to condensation problems: condensation inside the gap between
the Reference Body and the Thin Shell not only does not allow operating the system, but also
requires long time to be fixed.

For this reason the system is maintained fully powered up also during day and night time. If a
switch off of the system is mandatory, the dew-point level has to be taken carefully in account.

Moreover, if the wind speed is over 8 [m/s], for thin shell safety reasons, only the system can be
powered off but not the AO software framework.

In order for the mirror to work for observation the telescope elevation has to be greater than 25
degrees, the swing arm has to be deployed and the wind speed at secondary level has to be below
22 m/s. Elevation and swing arm deployment status has to be available from the TCS in order to
permit to the Adaptive secondary to properly working, while the wind speed is measured by an
anemometer controlled by the AO software.

For safety reasons, if the wind speed becomes unavailable, the TSS safety extra current is
enabled.

In the same way, if the elevation or the swing arm status becomes unavailable, the shell is rest
against the reference body and any operation will be stopped.

Please take care about the AOS process: since the AOS is routing the information from the TCS to
the AOSupervisor , any shutdown of the AOS will cause the TSS to be enabled and the shell to
be rest.

In the same way a mis-functioning of the TCS processes in charge of collecting the elevation and
the swing arm status will cause an AOSupervisor reaction as described above.

9.2. Quick start with AOS GUI (from BP4 built ahead)
Open the AOSGUI. If the GUI is RED, the upper left label is not “Connected” or if the marked
Adaptive Secondary fields do not look like the ones here reported please refer to the chapter 9.5

Figure:	 	 9-‐1	 AOS	 GUI	

Press the SET button and wait. After a couple of minutes, if everything is ok, in the Adaptive
Secondary frame, the label should change from SAFE to SET.

At the end of the observation night, please put the mirror in the SAFE position BEFORE going
horizon to close the dome pressing REST. If you REALLY want to power the system off you can
press, after the REST, the OFF button. (About that read carefully the chapter 9.1).

In case of mirror FAILURE please use the engineering GUI as shown below.

9.3. Quick start with Engineering GUI
Start the adsceng panel (See chapter 5.1):

Figure:	 	 9-‐2	 Adsec	 Engineering	 GUI	 panel	

Press for starting the AdSec Arbitrator GUI.
Note: the AdSec Arbitrator GUI can also be started from a terminal with this command:

AdSecControl

Once the GUI opens, check the fields circled in RED in the following screenshot.
If the fields marked in RED are not showing values OR have a RED background please check

that the AOS is up and running. If that values are not correctly updated the Adaptive Secondary
cannot be operated. Check the “AdSec Arbitrator Status” label (circled in orange in the following
screenshot). It must show a Ready state. If not, refer to chapter 7 to set the proper arbitrator status.
To set the shell, press the “SetFlatAo” button (on the left column, circled in orange in the following
screenshot). The command will take about 2 minutes to execute. At the end, the status will be
“AOSet”.
At this point, the secondary mirror is flat and ready for seeing limited operation and no further
action is necessary.

Figure:	 	 9-‐3	 Adsec	 Arbitrator	 GUI	

Once the shell is set, you can apply low order Zernike correction. Write a value (um wavefront),
press Enter and once the field is updated press Apply.

At the end of the observation, put the thin shell in safe position with pressing the Rest button.
The Adsec Arbitrator status will change from AOSet to Ready.

9.4. Status indicators

At the top of the AdSec Control GUI, the following status information is shown:

• AdSec Arbitrator Status: tells the operator in which state the AdSec is at the moment, and
therefore which commands are available. Also, in the GUI commands that are not available
at the moment are grayed out.
Note: if the AdSec Arbitrator program is not running, or not correctly responding, the Status
will be “offline” and no commands will be executed.

• Last executed commands: shows the name of the last command executed by the AdSec
Arbitrator

• Command execution status: shows whether a command is executing at the moment, or the
result of the last command. When a command is executing, all GUI buttons are inactive.

• Focal station: shows the currently selected focal station (which may be “None” if no focal
stations have been selected since the last adsec startup). The selected focal station is the only
one allowed to send slopes to the secondary mirror.

• Lab mode: the red label “lab mode enabled” is shown when the arbitrator is in the so-called
“lab mode”. In this mode, some safety features are disabled. Intentionally, it is not possible
to enable the lab mode using the GUI.

• Telescope data (wind, elevation, swing arm status).
• Safe skip indicator. Becomed RED when the AO loop is skipping more than 10% of the

frames.

9.5. Quick recovery from Failure
The Adaptive Secondary arbitrator can reach a Failure state in case of some hardware or software
fault occurred. The software will try to recover automatically from the failure and go back to
Ready state. In case this is not working, the operator has to press the “RecoverFail” button on the
AdSec Arbitrator GUI to recover the system.

The fail recovery procedure takes about one minute to complete.

In case the Recover Fail procedure does not work, try first to restart the software from
scratch. If it is still impossible to start the mirror, you will need technical assistance from Arcetri.

9.6. Adaptive Secondary startup and shutdown

9.6.1. With Engineering GUIs
Log on the adsecdx pc and start the engineering GUI panel and the Adsec Arbitrator GUI (see
chapter 9.3). The top of AdSec arbitrator GUI should look like the following one. In particular the
Adsec Arbitrator Status should be PowerOFF and the On command button should be enabled.

Now press the On button and wait until the system is switched on and the Adsec Arbitrator

Status changes from PowerOff to PowerOn. After that proceed pushing the LoadProgram button.

At this point the Adsec Arbitrator Status should change from PowerOn to Ready. Now the mirror
is ready to operate as shown in chapter 9.2. When you end the observation this is the right status
in which put the Adaptive Secondary.

If you need to PowerOff the Adaptive Secondary, please check the Safety Remarks (9.1). After
that, you can simply power off the system pushing the PowerOff button.

When the Adsec Arbitrator Status changes to PowerOff, you can shutdown also the AO software
framework as described in 3.2.

9.7. More on GUIs
In the Adsec engineering GUI panel you can select two more useful GUIs that allow to you to have
a more detailed look to the Adaptive Secondary mirror status.

9.7.1. AdSec Mirror GUI
This GUI can be used if the Adsec Arbitrator status is Ready, AOSet or AORunning. It shows in a
quick look the capacitive sensors readings, the force applied from each voice coil and the command
sent by the Slope Computer.
This GUI can be started from the engineering panel, or from a terminal with the command:

AdSecMir_GUI

9.7.2. AdSec Housekeeper GUI
This GUI shows all slow diagnostic data of the adaptive secondary, essentially temperatures of
various component of the Adaptive Secondary.

This GUI can be started from the engineering panel, or from a terminal with the command:

Housekeeper_gui

For the boolean values, dark or green means 0, white or red means 1. The STATUS FLAG on the
right of each variable with a range can be GREEN (nothing to report), YELLOW (variable with
warning values) or RED (variable out of the alarm thresholds). For the thresholds refers to 641a017.

NB: The ADAM panel STATUS FLAG are not properly working

A. Stop: start/stop acquisition data from Housekeeper process
B. Last update timestamp
C. Help: help (if any)
D. Exit: close Housekeeper GUI

• 1. System summary Panel
• 2. Crate BCU Panel (1)
• 3. Crate BCU Panel (2)
• 4. Crate DSP Panel
• 5. Adam Panel
• 6. Warning Panel
• 7. Alarm Panel
• 8. Panel values summary plot
• 9. Panel values summary plot
• 10. Housekeeper frame rate
• 11. Unused
• 12. Hub temperature
• 13. Coldplate temperature
• 14. Reference Body temperature (see map)
• 15. Inner structure ASM temperature (see map)
• 16. Power Backplane temperature

• 17. External Temperature Probe
• 18. Fluxmeter value
• 19. Water temperature main inlet probe
• 20. Water temperature main outlet probe
• 21. Water temperature coldplate inlet probe
• 22. Water temperature coldplate outlet probe
• 23. External Humidity percentage
• 24. Dewpoint value
• 25. Dewpoint distance from lowest temperature
• 26. Separe plot: if available, a running plot can be requested for the corresponding variable
• 27. Passing the mouse on a value, here you will se the thresolds on minimum values
• 28. number of variables in warning
• 29. number of variables in alarm
• 30. Passing the mouse on a value, here you will se the thresolds on maximun values

• 31. Crate identification number (0 to 5, Switch/Slave BCU 0)
• 32. Board identification inside crate (FF for BCUs, FC for siggen, F8 accelerometer)
• 33. NIOS identification number
• 34. Logics identification number
• 35. IP address of the BCU

• 36. Diagnostics frame counter
• 37. Board serial number
• 38. Power backplane serial number
• 39. Not relevant here. For details see 641a006
• 40. Not relevant here. For details see 641a006
• 41. Not relevant here. For details see 641a006
• 42. to 47. Analogic sensors. For details see map
• 48. to 57.Analogic parameters of the unit
• 58. Analogic sensors plot
• 59. BCU temperatures plot
• 60. Signal generator/Accelerometer board temperature plot
• 61. Crate selection
• 62. BCU FPGA temperature reading
• 63. BCU Board temperature reading
• 64. Signal generator/Accelerometer board FPGA temperature reading
• 65. Signal generator/Accelerometer board temperature reading
• 66. Signal generator/Accelerometer board DSP temperature (if any)

• 67.to 76. Reset status signals (see 641a017)
• 77. Driver enable boolean

• 78. Master crate boolean
• 79. Fault line boolean
• 80. Not relevant here.(for details see 641a017)
• 81. Not relevant here.(for details see 641a017)
• 82. Not relevant here.(for details see 641a017)
• 83. Not relevant here.(for details see 641a017)
• 84. Not relevant here.(for details see 641a017)
• 85. Overcurrent protecton boolean (for details see 641a018)
• 86. Not relevant here.(for details see 641a017)
• 87. to 90. Global current absorption on master crate plot and values (for details see 641a017)
• 91. Overcurrent protection thresholding plot
• 92. Crate selection
• 93. Signal generator/Accelerometer ID
• 94. Signal generator/Accelerometer NIOS ID
• 95. Signal generator/Accelerometer Logics ID
• 96. Signal generator/Accelerometer Serial Number
• 97. Single Crate absolute value current threshold
• 98. Not relevant here.(for details see 641a017)
• 99. System total positive current (valid only for crate master)
• 100. System total negative current (valid only for crate master)

• 101. DSP Board ID
• 102. DSP Board NIOS ID
• 103. DSP Boad Logics ID
• 104. DSP Board Serial number
• 105. to 108. Not relevant for here.
• 109. to 116. Coil current SPI reading
• 117. to 123. Not relevant here.(for details see 641a017)
• 124. Watchdog enable boolean
• 125. DSP 0 Watchdog expiration (for details see 641a018)
• 126. DSP 1 Watchdog expiration (for details see 641a018)
• 127. DSP board FPGA temperature
• 128. DSP board temperature
• 129. DSP board DSPs temperature
• 130. DSP board driver temperature
• 131. Crate selection
• 132. Board selection
• 133. Driver enable status for each actuator
• 134. to 139. DAC and ADC calibration paramenters (see 641a015)
• 140. Actuator selection

• 141. Main power (for details see 641a018)
• 142. Ethernet watchdog expiration (for details see 641a018)

• 143. TSS Status (for details see 641a018)
• 144. Driver Enable (for details see 641a018)
• 145. Not relevant here (for details see 641a018)
• 146. Firmware configuration selection (for details see 641a018)
• 147. Not relevant here (for details see 641a018)
• 148. Failure on TSS power supply number 0
• 149. Failure on TSS power supply number 1
• 150. Not relevant here (for details see 641a018)
• 151. System general fault signal
• 152. Failure on power supply number 0
• 153. Failure on power supply number 1
• 154. Failure on power supply number 2

9.8. Housekeeper configuration files

All the Housekeeper variables limits are listed in the configuration file; housekeeper.param. The
file is in the directory: $ADOPT_ROOT/conf/adsec/current/processConf/housekeeper. In the
Housekeeper GUI, the option Crate DSP shows the temperature values of the 4 sensors for;Stratix,
Power, DSPs and Drivers for every crate the boards For every crate (0 to 5) we have 14 boards (0 to
13).

Example: If a temperature sensor for one variable is giving bad readings, eg: DSPDRIVER-0008
=10e4 reported in the housekeeper.R/L.log, this sensor probably is bad functioning and to have the
system to operate has to be disable it. The 8 means crate 0 board 8. To do so, we can edit the file
housekeeper.param and for the DSPDRVERTEMP variable we just do:

FamilyName From To AlarmMin WarnMin WarnMax AlarmMax RunningMeanLen CAF
Enabled Slow

DSPDRIVERTEMP 8 8 -50 -15 inf inf 5 1 dis fast

From 8 to 8 is to specify the bad temperature sensor and the dis option means disabled

10. Low-level GUIs

10.1. System processes GUI

The System processes GUI lists all the necessary processes for the subsystem currently configured
(either the Adaptive Secondary or the WFS), and shows whether each process is running or not, or
if it is being initialized. It also provides buttons to start and stop each process, and to visualize their
log file.

The status indicator of each process can have three values:

• Down (red): the process is not running or not connected to the MsgD
• Init (yellow): the process is running, but not yet correctly initialized
• Up (green): the process is running correctly

The initialization fase is generally very short, except for processes which must wait for some
particular condition (for example, the adamHousekeeper will remain in “init” state until the
secondary mirror unit is powered on). In normal operating conditions, all lights should be green.

The “log” button will open a window where the log file of the specified process is shown, with
color-coded lines for normal logs, error logs, etc. The window does not show the entire log file, but
only shows the last part, and follows the changes as they are written. If the process is restarted, the
log will continue in the same window. The log window is only a viewer and can be closed at any
time with no harm.

10.2. Variable inspector tool

The variable inspector tool is a viewer/editor of the central variable repository maintained by the
RTDB. A different variable repository is maintained on each AO computer, even if some
information of common interest is replicated.

10.3. Text-based tools

10.3.1. Consumer

 "consumer" connects to the shared memory buffer that contains the realtime telemetry, and it has options to dump
the data on disk, how many frames to save, etc, like this:

[sxwunit@lbti-sxwfs]$./consumer -w telemetry.dat -c 100000 1 masterdiagnostic.L:OPTLOOPBUF

-w <filename> is the output file
-c <count> is how many telemetry frames to store. If omitted, runs until interrupted with Ctrl-C.
"1" is just a stupid argument to have a number in the clientname in case multiple consumers are connected
"masterdiagnostic.L:OPTLOOPBUF" is the name of the shared memory buffer

The number and buffer name must be the last two arguments

10.3.2. Log files

All AO processes, except for graphical interfaces, write information on what they are doing in a log
file. Log files are ASCII text and can be opened with any text viewer (see also the logviewer tool,
chapter Error! Reference source not found.). Care must be taken not to modify the log file if they
are opened with an editor such as Emacs or Vi.

The log file has a standardized path and filename:

$ADOPT_LOG/<processname>.<side>.log

Where <processname> is the name of the process, and <side> is the telescope side is it running on.
The MsgD has a special name:

$ADOPT_LOG/M_<msgd name>.log

10.3.2.1. Log file archiving

When a process exits, its log file is “archived”, that is, is renamed to make room for the new log file
which will be created when the process will restart. The archived filename has the format:
$ADOPT_LOG/<processname>.<side>.<timestamp>.log

Where <timestamp> is a timestamp in Unix format, recording the time when the file was archived.
Log files are automatically archived and re-openened when they reach a predefined length (around
200MB). Log files are also archived when a process, upon starting, finds out that the log file of the
previous instance was not correctly archived. The process will then archive the old log file before
opening a new one.

Graphical and text interfaces, which can run in multiple copies at the same time, do not write a log
file.

10.3.3. Telemetry files

In addition to log files, a few processes also write telemetry files, which are a special case of log
files containing mostly numerical data. They are still in ASCII format and have the following
naming scheme:

$ADOPT_LOG/<processname>.<side>_TELEMETRY.tel

Telemetry files are archived in a similar manner as the log files.

11. Common tasks

11.1. System preparation

11.1.1. Using the AOSGUI

• Check on the AOSGUI that the software status is OK (AOS connected, and green light on
the AdSec and Wfs software status). See chapter 4.2.1.

• Check if the hardware subsystems (again either the AdSec or both the AdSec and the WFS)
are turned on. They will be off if the software was just started. Turn on the needed
subsystems. See chapters 4.2.3, 4.2.3 and 4.3.1.

• Set the Adaptive Secondary shell (see chapter 4.3.1).
Note: telescope conditions (like elevation < 25 degrees) may prevent the shell from setting
up, or will cause it to rest it afterwards (see chapter Error! Reference source not found.).
The shell will need to be set again after these conditions are resolved.

11.1.2. Using the Arbitrator GUIs

In case the AOS GUI is not available, or the AOS is not working properly, it is still possible to
setup the system from the Arbitrator GUIs.

• Check that the software on adsecdx is up and running properly (see chapter 3.2)
• Bring up the adsceng panel on the adsecdx computer
• Start the AdSec Arbitrator GUI
• Setup the adaptive secondary using the command buttons in the left column. The complete

sequence is:
o “On” (goes to status Operating)
o “LoadProgram” (goes to status Ready, corresponding to the SAFE label on the

AOS)
o “SetFlatAo” (goes to status AOSet, corresponding to the SET label on the AOS).

If the adaptive secondary is already halfway through this sequence, only the remaining steps need to
be performed. Most of the time, the secondary should be in Ready state (SAFE label on the AOS).

To setup the WFS:

• Check that the software on wfsdx is up and running properly (see chapter 3.2).
• Bring up the wfseng panel on the wfsdx computer
• Start the WFS Arbitrator GUI
• Select the configuration “complete with ccd 47” and press the Operate button. The setup

operation will take a few minutes to complete.

When the WFS Arbitrator GUI reports that the WFS is in state “Operating”, the setup is done and
observation can proceed.

11.2. System shutdown after observation

11.2.1. Using the AOSGUI

• Rest the Adaptive Secondary mirror shell (see chapter 4.3.1). Do not turn off the secondary
mirror, leave it in the status marked SAFE on the AOS GUI.

• Turn off the WFS (if it was turned on initially)

11.2.2. Using the Arbitrator GUIs

• From the AdSec Arbitrator GUI on adsecdx, press the “Rest” button and verify that it goes
to “Ready” state.

• From the WFS Arbitrator GUI on wfsdx, press the “Off” button and verify that it goes to
“Off” state.

11.3. Seeing limited observation

11.4. AO observation sequence

AO observations are intended to be performed automatically by the instrument through the IIF. It is
possible for the AO operator to intervene to repeat or modify a command using the AOS Command

GUI, where the original command parameters are displayed. In case of a command failure, or if a
command must be repeated, the operator can modify the parameters on the AOS Command GUI
and repeat the command.

This chapter gives a resume of the typical AO sequence, an overview of what happens during each
command, and what is possible for the operator do to in each case.

11.4.1. PresetAO

An AO observation starts with a PresetAO command, which tells the AO system the main
parameters of the following observation: which instrument and focal station will be used, and the
reference star magnitude and position. The command is received by the AOS and forwarded to the
lower-level arbitrators, where the following parameter checks are done:

By the AdSec Arbitrator:

• focal station name is among the ones defined for the Switch BCU input ports

By the Wfs Arbitrator:

• Star magnitude is within the limits of the AO parameters table
• Star position is within the AO field-of-view of the wfs stages
• A board setup file with the same name of the instrument is present

The AO parameters table and AO field-of-view are defined in two different WFS calibration files
(see section 17). The board setup file will be searched in the board setup directory (see section 17).

If any of the checks fails, the command will report a “Validation failed” or “Retry” error. In this
case, the command must be repeated with valid parameters before AO observations can go ahead.

When the parameters are successfully validated, the AdSec and WFS are configured, ccd darks are
taken and the board setup file is applied. Tracking loops (rerotator, adc) are turned on. If the WFS
CCD displays are active, they may stop for a while during the CCD reconfiguration.

A PresetAO command can be repeated any number of times without harm. Since it may take a
certain amount of time (up to a couple of minutes if everything must be reconfigured), the PresetAO
can be sent while the telescope is slewing to speed up AO operations.

11.4.1.1. Error conditions and recovery
• Focal station name is not recognized. Solution: repeat the command with a recognized focal

station name
• Instrument name is not recognized. Solution: repeat the command with a recognized

instrument name
• Star magnitude is too faint or too bright: Solution: repeat the command with a star

magnitude within accepted bounds
• Star position outside FoV. Solution: repeat the command with a star position inside the

accepted FoV
• Any other problem is a symptom of hardware failure.

11.4.2. AcquireRefAO

The AcquireRefAO tells the AO system to acquire the reference star and configure the system for
close loop operations. It has no parameters since everything was specified by the previous PresetAO
command. When the AcquireRefAO command is received by the AOS, the following sequence
happens:

• A sky image is taken wih the ccd47 and the position of the reference star is measured
• WFS stages are moved to bring the reference star on the target position
• The magnitude of the star is measured on the ccd39 and compared with the one given by the

system during the PresetAO. If there is a difference, the system is reconfigured (basically
repeating a PresetAO command) for the new magnitude.

• The AO loop is temporarily closed with a special set of parameters to center the camera
lens.

• Once the camera lens is centered, the temporary AO loop is opened and the system is
configured with the final parameters.

A number of things may prevent the command from completing successfully. The following section
details the most common problems encountered.

Note: the fact that a temporary AO loop is closed during this command means that telescope
guiding and active optics must be stopped during command execution. This is done automatically
by the telescope when in ADAPTIVE mode, but must be done manually if the telescope was preset
in ACTIVE mode.

11.4.2.1. Error conditions and recovery

• Star not found on ccd47. It may happen that the telescope pointing was not accurate enough
(the ccd47 field has a diameter of about 15 arcseconds), or that the star position given the
previous PresetAO command was incorrect.

• Star found, but of very different magnitude. In this case the system will assume that the
wrong star was found, and will stop.

• Camera lens position not reached: if the seeing is very bad, it may prevent a good
measurement of the pupil position on ccd39, causing the camera lens centering to fail.

• AdSec safety failure during the temporary closed loop.

In case of any error, since there are no parameters for the command, the only option for the operator
is to solve the external problem and try again. If any of the parameters sent with the PresetAO
command need to change (for example, the star position or magnitude needs to be changed), the
operator must first send another PresetAO command and then repeat the AcquireRefAO.

An AcquireRefAO can be repeated any number of times.

11.4.3. StartAO

Once the AcquireRefAO has completed, the loop can be closed immediately with the StartAO
command. This command has no parameters and no failure modes (apart from hardware failures),
since it just enabled the “fastlink” fiber over which the slopes are transmitted.

Once the system is in closed loop, the realtime part will go on indefinitely until another command is
sent, or until a safety failure occurs.

11.4.3.1. Error conditions and recovery

No errors are expected during the command. After that, the system is in closed loop and an AdSec
safety failure can occur.

11.4.4. PauseAO/ResumeAO

The PauseAO command suspends the AO loop, while the ResumeAO command resumes a
previously paused loop. Their operation include a check on the incoming light on ccd39 before
resuming the loop:

PauseAO:

• Records illumination level on ccd39
• Disables the “fastlink” fiber and stops the flow of slopes to the adaptive secondary

ResumeAO:
• Checks that the illumination level is the same as recorded during the ccd39
• Enables the “fastlink” fiber and resumes the flow of slopes to the adaptive secondary

The check on the illumination level prevents resuming the loop if, during the pause, the reference
star is not in the WFS field of view anymore. This may happen in case of tracking drifts, or if some
incorrect offsets were executed during the pause.

11.4.4.1. Error conditions and recovery

• Illumination level check fails on ccd39 during resume. Solution: if the reference star
position is known, fix the WFS position using an OffsetAO command and try again.
Otherwise, the loop must be opened with a StopAO command and the AO sequence started
again from the PresetAO.

11.4.5. OffsetAO

The OffsetAO can be executed in any condition (loop open, closed, or paused).

If the loop is open or paused, it will be executed simply moving the WFS stages by the specified
amount. The reference star will be then lost, unless the same offset is executed by the telescope
mount.

If the loop is closed, the WFS stages will be moved in small steps of 0.3 mm, waiting at each step
for the tip-tilt offloading to recover the movement. The execution time for the offset is
correspondingly greater.

11.4.6. Other failure modes

11.4.6.1. AdSec safety fault

When the loop is closed, the AdSec mirror shape and forces are under continous safety check by the
FastDiagnostic process. If an out-of-range condition is detected, the power to the mirror actuators
will be turned off, terminating immediately the AO loop and causing the shell to go back to rest
position.
In this event, the AdSec mirror will execute its own “RecoverFailure” routine, which brings it back
to the Operating state where it is ready to be set again. In the meantime, any AO operation in
progress will have been cancelled, and the WFS has been notified of the event and stopped as well
in order to stop the flow of slopes to the secondary mirror.

The operator must set the shell again (see chapter 11.1.1) and restart the AO observation from the
PresetAO command.

11.4.6.2. Hardware failure

If a hardware failure happens, it will be generally impossible to continue the AO observation. It is
not feasible to list all possible hardware failures. What will happen is that commands will start to
fail randomly with specific error messages about the faulted hardware component. It will be
necessary to look at the Arbitrator GUIs and log files to properly diagnose and fix the problem.

12. Calibration procedures

12.1. Interaction matrix calibration

12.1.1. Preparation
The measurement is done in daytime using the retroreflector. It is critical that the system optical setup is as similar as
possible to the one used during night observation. The setup is described in detail in the “FLAO User Procedures” in
chapter 7 (daytime AO closed loop). Basic setup of the AO system (software startup, power on, etc) is also described in
the same document.

This document assumes that the system has been setup according to the User Procedures document, and that an AO
daytime closed loop has been successfully closed.

12.1.2. Measurement parameters
When measuring a reconstructor matrix, a few parameters must be chosen before starting the measure:

• AdSec modal basis

• WFS CCD binning

12.1.2.1. Modal basis

The adsec modal basis (sometimes called modes-to-commands or M2C matrix) is a list of command vectors. Each
vector contains the actuator commands that are needed to generate a certain modal shape on the mirror. The modal
shapes definition, and the calculation of the corresponding actuator commands, is done with a specialized procedure
that reduces data taken with the 4D interferometer.

In practice, a modal basis is a directory on the AdSec computer, which contains several files and subdirectories. Here is
a typical layout:

[AOeng@adsecdx M2C]$ ls -l KL_v16

drwxr-xr-x 2 AOeng aoacct 32768 May 15 02:48 RECs

drwxr-xr-x 2 AOeng aoacct 4096 Nov 12 2013 disturb

drwxr-xr-x 3 AOeng aoacct 4096 Oct 15 2010 filtering

drwxrwxrwx 3 AOeng aoacct 1019904 Jul 2 04:55 gain

drwxr-xr-x 130 AOeng aoacct 4096 Oct 13 2013 intmatAcq

-rw-r--r-- 1 AOeng aoacct 3617280 Sep 15 2013 m2c.fits

 drqxr-xr-x 2 AOeng aoacct 4096 May 1 19:46 modesAmp

The name “KL_v16” identifies a modal basis, whose contents are found in the “m2c.fits” file. Several subdirectories
exist, which contain data that is only valid when used together with this specific modal basis: reconstructors, time
filtering matrices, gain vectors, etc.

This directory structure has been created when the modal basis was measured, and there is no need to setup it manually.

12.1.2.2. WFS CCD binning
The FLAO WFS can operate in four different binning modes, numbered from 1 to 4 inclusive, depending on the
reference star brightness. In order to close the loop using a binning mode, a reconstructor matrix must have been
measured with the WFS configured with the same binning. Thus, multiple measurements of the same modal basis may
be needed, up to one for each binning.

12.1.3. Modal history generation
The first step is to generate a modal history, that is, a sequence of push-pull commands that will be loaded on the AdSec
and “played” during the measurement. Such a sequence is also called a disturbance, because it uses the disturbance
feature of the AdSec in order to work.

This step can be executed offline, as it does not need any input from the live system except for the presence of the
modal basis on disk.

The parameters needed to generate a modal history are (please refer to the screenshot on the next page for parameters
placement):

1. The modal basis to use (already decided before)

2. How many modes to measure: initially 10, will be increased with further iterations.

3. Type of modal history (push-pull or sinusoidal): only push-pull is currently allowed

4. No. of frames for each movement: currently fixed at 3 frames

5. Push-pull cycles: as many as possible, but without exceeding the AdSec disturbance capacity, which is 4000
frames. Thus the total product No. of frames * cycles *2 must be <= 4000. The GUI will show the total in
green or in red (if it is over the threshold).

6. Amplitude file: this is a file containing a vector of amplitudes, one for each mode. Unless a hand-optimized
one is available, one of the pre-defined ones like 672_0.2.fits is a good start.

After parameters have been entered, click on “Generate”. After a few seconds, a tracking number will appear on the
right. This is the disturbance tracking number, which must be noted down for later use.

Prerequisites:

• WFS software must be up and running, as described in the User Procedures document in section 2 (“Start
and check Software status”).

 Action Procedure Notes

• Start intmatDisturbGui [AOeng@wfsdx ~]$
intmatDisturbGui

• Enter main parameters Enter modal basis, number of
modes to measure.

• Enter push-pull parameters Click on push-pull radio button.
Enter no. of frames/movement

and cycles
Check that total is <= 4000

• Generate disturbance Click on “Generate”
• Note down the tracking

number
 Format is

YYYYMMDD_HHMMSS

Note:

A modal history can be re-used as many times as needed, and is independent from WFS CCD binning.

12.1.4. Interaction matrix measurement
After a modal history is available, the interaction matrix can be measured. It is critical that the measuring conditions are
as similar as possible to the night-time conditions. This means:

1. No lights in the dome

2. No vibrations (as far as possible)

3. All WFS tracking loops (rotation, camera lens, anti drift) active, as described below.

The measurement is usually done in closed loop. A full system setup is needed, that can be obtained following the
User Procedures manual in section 6.5 (“Close AO loop in daytime”). That procedure includes all vibration mitigation
needed for daytime operation.

If no reconstructor matrix is available for the current WFS pupil and binning combination, a closed-loop
measurement is not possible. It is suggested to do a low-order measurement (10 modes) with very long averating (100
cycles or more) in order to obtain a preliminary reconstructor matrix. The measurement can be then iterated (see the
“iteration” chapter later on).

The measurement is done at a loop speed of 600 Hz. This is a compromise between the necessity of going as fast as
possible, in order to minimize vibrations, and the mirror settling time. This speed should be entered in the WFS
Arbitrator GUI as described below. Speeds different from 600 Hz have not been tested and may not work.

Prerequisites:

• Execute User Procederues section 6.5 - Close AO loop in daytime

 Action Procedure Notes

1. Open the AO loop Press STOP on the AOS command
GUI

2. Set 600 Hz loop speed Open WfsControl GUI.
In the “Loop params” panel enter
the following parameters:
Binning = the one chosen for the
measurement
Loop frequency = 600 Hz
Modulation: 3 (bin 1-2) or 6 (bin 3-
4)
And click the “Apply” button

3. Start tracking loops On the WfsControl GUI, make sure
that the three tracking loops:

1) rotator tracking
2) Camera lens tracking
3) Anti drift

are enabled. Click on the
corresponding Enable or On
buttons if needed.

4. Start intmatAcquireGui [AOeng@wfsdx ~]$
intmatAcquireGui

5. Select the M2C Same one used during disturbance
generation

6. Select disturbance If a different one is needed, select
it.

The last generated
disturbance is pre-
selected

7. Enter the no. of iterations Use at least 4 to fully use the
AdSec internal buffers. If more
averaging is wanted, use a higher
multiple of four (i.e. 16, 48, etc).

Time needed is about
1 minute every 4
iterations including
overheads.

8. Enter the reconstructor If a reconstructor is available for
the current pupil and binning
combination, click the “Acquire in
closed loop” checkbox and select
M2C, reconstructor, and a low gain
vector like 0.05.fits

An old reconstructor
with a different M2C
but the same WFS
pupils may be used if
it is still working fine.

9. Start measurement Click the “Acquire” button on the

GUI
10. Wait for completion It will take about 1 minute for

every 4 iterations.

11. Note down tracking number Tracking number appears next to
the Acquire button

Same YYYY…
format as before.

12.1.5. Reconstructor matrix generation
After an interaction matrix has been acquired, one or more reconstructor may be generated from it. Typically, a full
interaction matrix is acquired with 500 or 600 modes, and a set of reconstructors with progressively more modes is
generated (for example: 10, 100, 250 and 500).

The generation is done with a GUI, which however uses terminal input for some parameters. It is best to use a
terminal dedicated to this GUI to avoid conflicts.

The generation can be done “offline”, just starting the GUI. Only the WFS software is needed to be running.

Prerequisites:

• WFS software must be up and running, as described in the User Procedures document in section 2 (“Start
and check Software status”).

 Action Procedure Notes

1. Start intmatAnalyseGui [AOeng@wfsdx ~]$
intmatAnalyseGui

2. Select acquisition Select M2C and tracking number to
analyse

Last tracking number
is pre-selected

3. Select parameters “skip frame” and “avg frames” are
always “2”. Check “remove tip-
tilt” and uncheck “only check
saturation”

4. Start analysis Click on the Analyse button
5. Answer questions on

terminal
Often the terminal pauses and asks
to press Enter to continue, in order
to look at a plot or graph

Sometimes the
terminal is hidden
behind big plots.
Close or move them
away.

12.1.5.1. Iteration
Once a reconstructor is available, it is recommended to repeat the measurement in closed loop. Repeat all steps in

section 5, and when configuring the acquisition GUI, click the “Acquire in closed loop” checkbox and select the M2C
and reconstructor. A very low gain (like 0.05) is recommended.

The typical reconstructor iteration is as follows:

1. 10 modes (open loop)

2. 10 modes (in closed loop with previous 10 modes)

3. 50 modes (in closed loop with previous 10 modes)

4. 100 modes (in closed loop with previous 50 modes)

5. 400 modes (in closed loop with previous 100 modes)

6. 400 modes (in closed loop with previous 400 modes)

Only the last reconstructor is considered useful. In addition, a 10 modes reconstructor is generated from the last
interaction matrix measurement, for use during the camera lens centering loop.

13. Saving diagnostic data

13.1. Data format description

Diagnostic data is stored into a directory on the adsec computer:

/local/aomeas/adsec_data

the wfs computer mounts this directory via NFS using the same name, as described in sections 1.8
and 1.9. The /local/aomeas prefix can be changed using the ADOPT_MEAS environment variable.

Data is organized into “tracking numbers”. Each tracking number is a directory containing a
number of data files. The directory name is a timestamp of when the data saving started and, in
order avoid having thousands of subdirectories, the adsec_data directory is further subdivided into
directories for each day. Thus the full path for a given tracking number is:

$ADOPT_MEAS/adsec_data/YYYYMMDD/YYYYMMDD_HHMMSS

where YYYYMMDD is a date in year-month-day format (like “20151125”) and HHMMSS is a
time in 24-hour-minute-format (like “115834”).

Typically, data inside a tracking number is not analyzed manually, but using the IDL elab_lib tool
described in the next section, and the user only has to record the tracking number that identifies a
particular acquisition of interest.

Each tracking number contains a number of files. Most files also contains the same timestamp in
their filename, in order to allow quick identification during data analysis. In the following table,
“xxx” stands for the full YYYYMMDD_HHMMSS. Thus for example, the name
“Frames_xxx.fits” will be saved on disk with a name like “Frames_20160301_224946.fits”.

Table	 1:	 List	 of	 files	 included	 in	 a	 tracking	 number	

Filename Format* Description Typical
size**

adsec.sav IDL SAV file Contains a number of IDL
variables with detailed AdSec
status information.

15 MB

AntiDrift_xxx.fits 4xN FITS,
FLOAT 32 bits

anti-drift” background
corrections applied to the ccd39
background file

68 KB

Commands_xxx.fits 672xN FITS,
FLOAT 32 bits

Mirror actuator commands 11 MB

CrcErrors_xxx.fits N-elements
FITS, INT 32bits

CRC error counter on fastlink
fiber

20 KB

DarkApplications_xxx.txt ASCII Timestamps of ccd39
background changes

From zero to
few KB.

Dimm_xxx.fits Variable length
FITS, FLOAT
32 bits

Dimm values received from TCS
during data acqusition

3K

FlTimeout_xxx.fits N-elements
FITS, INT 32bits

Timeout counter on fastlink fiber 20 KB

Frames_xxx.fits 80x80xN FITS,
INT 16 bits

Ccd39 pixel frames 49 MB

FramesCounter_xxx.fits N-elements
FITS, INT 32bits

Slope computer-generated frame
counter

20 KB

GuideCam_xxx.fits Variable length
FITS, FLOAT
32bits

 3 KB

LoopClosed_xxx.fits N-elements
FITS, INT 32bits

History of loop closed flag
during data acquisition

20 KB

MirrorCounter_xxx.fits N-elements
FITS, INT 32bits

MirrorBCU-generated frame
counter

20 KB

Modes_xxx.fits 672xN FITS,
FLOAT 32 bits

Delta-Modes (reconstructor
output)

11 MB

PendingCounter_xxx.fits N-elements
FITS, INT 32bits

mirror “pending” frame counter 20 KB

Positions_xxx.fits 672xN FITS,
FLOAT 32 bits

Mirror actuator positions 11 MB

SkipCounter_xxx.fits N-elements
FITS, INT 32bits

“skip frame” frame counter 20 KB

Slopes_xxx.fits 1600xN FITS,
FLOAT 32 bits

Slopes calculated by slope
computer BCU

25 MB

Timestamp_xxx.fits N-elements
FITS, INT 32bits

 20 KB

wfs.fits FITS with no
data, only header

Contains the WFS device status
in the FITS header.

17 KB

WFSGlobalTimeout_xxx.fits N-elements
FITS, INT 32bits

Global timeout counter 20 KB

WindDir_xxx.fits Variable length
FITS, FLOAT
32bits

Wind direction data received
from TCS during data
acquisition

3K

WindSpeed_xxx.fits Variable length
FITS, FLOAT
32bits

Wind speed data received from
TCS during data acquisition

3K

* In the format specification, N refers to the dataset length (usually 4000 frames)
**Typical size is given for a dataset length of 4000 frames.

13.2. Optical Loop Diagnostic GUI

The Optical Loop Diagnostic GUI is a tool to trigger saving of diagnostics data sets. The user has to
choose which data must be saved using the checkboxes in the “Optical Loop” panel. If the system is
in open loop, only Frames and Slopes are available (if the other data types are selected, they will be
saved but will only contains zero). Data types not described in the checkbox, but listed in Table 1,
are always saved.

The number of frames to save can range from a minimum of 2 to a maximum only limited by the
amount of available RAM on the wfs computer. A typical value for AO data is 4000 frames,
however values up to 20000 frames have been used with success.

Optionally, a PSF from one of the available instruments (ccd47, IRTC/LUCI) can be selected, and it
will be saved as an additional FITS file in the tracking number directory. Use of the PSF checkbox
will trigger specialized routines to trigger frame acquisition on the instrument, and may fail if the
instrument has not properly setup.

Once all values have been initialized, click the “Start” button to star the data acquisition. The
display will show the tracking number and the acquisition progress in terms of number of frames
and data speed in Hz, refreshed about once per second. When the acquisition is complete, the

display will show “Saving…” while data is saved on disk. Once the saving is complete, the tracking
number turns green.

14. Elaboration library (elab_lib)

The elaboration library is an IDL object-oriented library dedicated to the analysis of the FLAO
diagnostic data described in section 13.

An introduction to the elaboration library can be found on the LBTO wiki site:

http://wiki.lbto.org/bin/view/AdaptiveOptics/Elab

The elab_lib has an internal help system that provides a concise description of (nearly) every
procedure and function. See the “help” section in the Getting Started page of the above wiki site for
more information.

15. Configuration files

15.1. File format

Configuration is stored into configuration files. A configuration file is an ASCII file, with a
filename that by convention ends in “.conf”.
Configuration files are stored into this directory:

$ADOPT_ROOT/conf/<system>/current/processConf/

where <system> is one of “wfs” or “adsec”. “current” is a soft link to a specific subsystem name
(like “W1” or “672a”) and is usually created by the prepare.py procedure (described in section 2.2)

There is typically one configuration file for each process running in the AO Supervisor. A process
looks up the configuration file name using the identity provided by the “-i” command line switch.
For example, if a SimpleMotorCtrl instance is started up with this command line:

$ADOPT_ROOT/bin/SimpleMotorCtrl –i adc2

it will try to load this configuration file:

$ADOPT_ROOT/conf/<system>/current/processConf/adc2.conf

Configuration files are a list of keywords. Each keyword occupies a text line with three
components, separated by one or more spaces and/or tab characters:

<name> <type> <value>

<name>: the keyword name. Letters (case sensitive) and numbers are accepted.
<type>: one of the types listed in Table 2, in lowercase.
<value>: keyword value. See the type description for each value.

Table	 2:	 List	 of	 keyword	 types	

Type Description Examples
Int Integer number 23, -400
String String. Double quotes are needed if the string

contains spaces
adc, “adc motor”, 127.0.0.1

Float Generic floating-point number 0.2, -644.2
float32 Floating point number, limited to 32 bits
double Floating point number, double precision
structure A sub-configuration file. The keyword value is

the filename relative to
$ADOPT_ROOT/conf/xxx/current.

15.2. MsgD configuration file

A special configuration file is reserved for the MsgD-RTDB process. This file always has the name
“msgdrtdb.conf” and resides at the same level as the “processConf” directory. An example follows:

loglines 2000000
autodump 300

ident FLAOWFS
peers ADSEC:192.168.13.12

<loglines> is the maximum number of line to write in the MsgD log file before opening a new one.
<autodump> is the interval between information dumps in the log file
<ident> sets this MsgD identity
<peers> is a comma-separated list of <identity>:IPaddress pairs, that specify other MsgD to which
this MsgD will try to connect to.

15.2.1. Configuring peering

Message daemons can communicate between them using a custom "peering" mechanism: each
MsgD is identified by a string (called "identity"), connects to all other MsgDs and appears as an
ordinary client. If one or more MsgD are not reachable, a polling loop at low frequency (one
attempt every 5-10 seconds) is started.

Peering is configured with the “ident” and “peers” keywords described above. All MsgDs
participating in a peering set must have unique identities.

15.2.2. LBT setup

The following identities has been defined at LBT:

adsec computer: ADSEC
Flao WFS computer: FLAOWFS
LBTI WFS computer: LBTIWFS

The ADSEC MsgD peers with all possible WFSs. Each WFS only peers with the ADSEC MsgD.

At LBT, right and left sides do not peer, that is, they are completely independent from each other.

15.2.3. LTB configuration files

on adsecdx: $ADOPT_ROOT/conf/adsec/current/msgdrtdb.conf

ident ADSEC
peers FLAOWFS:10.144.0.85,LBTIWFS:192.168.149.100

on wfsdx: $ADOPT_ROOT/conf/wfs/current/msgdrtdb.conf

peers ADSEC:192.168.11.12
ident FLAOWFS

Similar configuration is used on the left side, with the appropriate IP addresses.

15.2.4. How to check if peering works correctly

The easiest way is to use the "thrdtest" utility to connect to the local MsgD and list the attached
clients. The others MsgDs will appear as a client marker with "(Peer)". For example:

[flao@wfsdx ~]$ thrdtest

THRDTEST: 6.14 [TH](Built: Sep 10 2015 14:46:04) - Dbg lev.:0,
quiet, Line edit & history:Yes
Trying to connect to MsgD @ 127.0.0.1:9752

THRDTEST cmd: clist

THRDTEST MsgD client list:
 M_ADSEC (Peer) [Id=1 N.Conn=1] 11.6 (Built: Sep 10 2015 14:41:52)
R NW @=193.206.155.42:9752 Start:2015-09-11 09:24:33.005752

15.3. Common keywords

All configuration files can contain the keywords listed in Table 3:

Table	 3:	 List	 of	 common	 keywords	

Keyword type Description Notes
Server string IP address or hostname of MsgD server Usually

127.0.0.1
LogLevel string General log level, allowed values are:

ERR (only log errors)

WAR (log errors and warnings)
DEB (log errors, warnings and debug)
TRA (maximum log level)

Simulation int If present and set to 1, the software will
enter simulation mode (if available)

16. Configuration keywords
The following tables list all the keywords accepted by the various configuration files. All keywords
are mandatory unless otherwise noted. If a mandatory keyword is missing, the process will exit and
write into its log file the missing keyword. If a file contains keywords not among the ones in the
table, they will be silently ignored.

Table	 4:	 List	 of	 keyword	 for	 SimpleMotorCtrl	 instances	

Keyword type Accepte
d values

Unit Description Notes

MotorType string filterwheel
adc
rerotator
mercury

 Motor type. Correspond to a
different C++ class
implementing motor
functionality.

Name string Motor name. Only used for
GUI displays

IPaddr string Ip
address
or
hostname

 IP address or hostname to
connect to

IPport Int IP port to connect to
Max Float32 Any mm or

degrees
Maximum allowed position

Min Float32 Any mm or
degrees

Minimum allowed position Movement
commands outside
min/max
boundaries are
rejected.

GoodWindow Float32 Any Mm or
degrees

Threshold to accept
position: if abs(current
position – commanded
position) <= good window,
the device is considered “in
position”

StartingPos Float32 mm or
degrees

Position to move to at
startup, (if homing is
enabled, this position is
assumed after homing has
completed).

Ratio Float32 Multiplier to apply to
translate user commands
into encoder increments

CircleSteps Float32 Encoder
increme

(only for circular
commands) number of

nts device increments to
perform one cicle

AutoHoming Int 0-1 If 1, perform homing
whenever the device is
turned on or newly
connected

AutoHomingOffset Int 0-1 If 1, apply an offset position
after the homing procedure
is completed

HomingOffset Float32 Encoder
increme
nts

Offset to apply to the
position found by the
homing routine

HomingPosition Float32 Special position: when
commanded to this position,
start the homing procedure

AbortPosition Float32 Special position: when
commanded to this position,
abort the current movement

The ability of
aborting a
movement is
device-dependent

HomingSpeed Int Device
units

Speed of homing movement

CruiseSpeed Int Device
units

Speed of all other
movements

Acceleration Int Device
units

Acceleration/deceleration

Unidirectional Int 0-1 If set to 1, only move
towards positive direction.

customPositionNu
m

Int 0-N Number of custom positions
defined.

The definition of
custom positions is
optional. If this
keyword is present
and with a non-
zero value, all
posX_name and
posX_pos
keywords are
mandatory.

posX_name String Name of position X (for
GUI display)

Allowed values for
X are from 0 to
customPositionNu
m minus 1.

posX_pos Float32 mm or
degrees

Definition of position X

Table	 5:	 Keywords	 required	 for	 SimpleMotorCtrl	 instances	 of	 type	 "rerotator"	 	

Keyword type Accepted
values

Unit Description Notes

HomingType String “ncal”
(homing to
negative)
“nrm”

 Type of homing to
perform

The keyword
value is the
name of the
Pollux serial

(homing to
positive)

command.

Speed float Device
units

Movement speed

Accel float Device
units

Movement
acceleration

nlimits int 1 or 2 Number of limit
switches

Table	 6:	 Keywords	 for	 the	 “Pinger”	 process	

Keyword type Accepted
values

Unit Description Notes

PollingPeriod Float 0-1000 s Interval between
successive pings to the
same device

TimeoutPeriod float 0-1000 s Period after which a
device is considered to
be offline

Must be less or
equal to
PollingPeriod

device_XXXX string IP or
hostname

 IP address or hostname
of device. The XXX
part is the name of the
device, and will be used
in RTDB variable
names.
Any number of
device_XXXX is
allowed.

If a hostname is
used, /etc/hosts
must contain an
entry to resolve it
to an IP address

Table	 7:	 Keywords	 for	 the	 “TTCtrl”	 process	

Keyword type Accepted
values

Unit Description Notes

ccd39process string Identity of the ccd39
controlling process.
Used to generate the
name of the RTDB
variable containing the
current frame rate.

pingerProcess string Identity of the pinger
process. Used to
generate the name of
the RTDB variable
containing the bcu47
online status.

ACT_NUM Int 3 Number of tip-tilt
mirror actuators.

Only “3” is
currently
supported!

TIMEOUT_MS Int 1-Inf ms Timeout for MirrorCtrl
replies when applying
values

Includes
round-trip via
Ethernet to the
BCU47

ZV_TO_XV double Any Ratio between user-
coordinates volts and
device voltage

Usually 1

MAX_FREQ Double 0-1000 Hz Maximum allowed
value for user-defined
frequency

MIN_FREQ Double 0-1000 Hz Minimum allowed
value for user-defined
frequency

MAX_VOLT Double 0-10 V Maximum allowed
value for user-defined
voltage

Used when
controlling
axes
independently

MIN_VOLT Double 0-10 V Minimum allowed
value for user-defined
voltage

Used when
controlling
axes
independently

DEFAULT_LL_FREQ Double 0-1000 Hz Default frequency
value at startup

DEFAULT_LL_AMP Double 0-10 V Default modulation
amplitude value at
startup

DEFAULT_LL_OFFSET Double 0-10 V Default voltage offset
at startup

DEFAULT_LL_PHASE_1 Double 0-360 deg Default phase for first
actuator

Usually set at
0,120 or 240
but may be
fine-tuned for
a specific
mirror head.

DEFAULT_LL_PHASE_2 Double 0-360 deg Default phase for
second actuator

DEFAULT_LL_PHASE_3 double 0-360 deg Default phase for third
actuator

DEFAULT_ROT_ANG Double 0-360 deg Default rotation applied
when translating high-
level XY positions into
low-level commands

DEFAULT_FREQ Double 0-1000 Hz High-level frequency at
startup

If 0, uses sync
signal from
bcu39

DEFAULT_AMP Double 0-10 V High-level amp at
startup

DEFAULT_OFFSET_X double 0-10 V High-level X offset at
startup

DEFAULT_OFFSET_Y double 0-10V V High-level Y offset at
startup

Table	 8:	 Keywords	 for	 the	 Autogain	 routine	

Keyword type Accepted
values

Unit Description Notes

slopes_skip

Int 1-1000 Number of slope frames
to skip after applying a
gain value

slopes_record Int 1-1000 Number of slope frames
to record (after
skipping) for each gain
value

removeBadModes Int 0-1 If 1, read the
“high_force_modes.fits”
file in the current M2C
directory and set to zero
the gain on those modes.

If the file does not
exists, this
keyword is silently
ignored.

reduction_factor Float any Apply this factor
unconditionally to any
generated gain value

Set to 1.0 for no
reduction. Usually
set to 0.8 or 0.7

interpolateGains Int 0-1 If 1, interpolate gains
between mid and high-
order, instead of
producing a step-like
function

Gain interpolation
is experimental.

RR Int 0-1 If 1, retro-reflector
operation is assumed
and all gains are
reduced by a factor of 2.

sinusIM Int 0-1 If 1, a sinusoidal IM is
assumed and all gains
are reduced by a further
factor of 2

max_iterations Int 1-10 Maximum number of
iterations to perform
while exploring higher
gain values, if a
minimum is not found
in the current range.

repeat_th Float 0-1 Repeat threshold in
percentage (0..1): if the
modal RMS at the
optimal gain value is
higher that the max
modal RMS multiplied
by this threshold, the
measurement is iterated
with 50% higher gains.

safe_skip Float 0-1 Percentage of safe-skip
condition above which
the autogain is aborted.

0=no check
1=wait for 100%
safe skip before
aborting. Check is
done once per
second.

bin1_min Float any Minimum gain value to
apply

All bin1 keywords
are also repeated
for bin2, bin3 and

bin4.
bin1_start Float Any Initial start of gain range
bin1_end Float Any Initial end of gain range
bin1_step Float Any Step to use while

exploring the range

bin1_cycles Int Any Number of times the
range is explored in a
single measurement.

Multiple range
explorations are
averaged.

bin1_max_tt Float Any Clip value for tip-tilt
gain

bin1_max_ho1 Float Any Clip value for mid-order
gain

bin1_max_ho1 Float Any Clip value for high-
order gain

bin1_ho_middle Int 3-670 Mode number that
divides mid-order
modes from high-order
modes.

	

Table	 9:	 Keywords	 for	 the	 “JoeCtrl”	 process	

Keyword type Accepted
values

Unit Description Notes

ccdName string “39”, “47” CCD name Only used for GUI
displays

ccdNum Int 39, 47 CCD number. Number is often
used in code.

ccdXdim Int 1-32767 px Number of pixels in the
X (horizontal)
dimension, not binned.

ccdYdim Int 1-32767 px Number of pixels in the
Y (vertical) dimension

ccdDefaultXbin Int 1-5 Default X binning
applied at startup

ccdDefaultXbin Int 1-5 Default Y binning
applied at startup

ccdDefaultSpeed Int any Kpixel/sec Default readout speed
applied at startup

ccdDefaultBlack Int 0-1023 Arbitrary Default black level
applied at startup

ccdBlacksNum Int 2, 4 Number of blacks
levels to configure: 4
for ccd39 and 2 for
ccd47

Corresponds to the
number of
amplifier channels.

minRep Int 0 Minimum allowed
value for the
“repetition” parameter

maxRep Int 1023 Maximum allowed
value for the
“repetition” parameter

maxNumSpeeds Int 1-8 Number of supported “supported” by the

readout speeds JoeCtrl process,
not the LittleJoe
hardware

maxNumBins Int 1-8 Number of supported
binning configuration

“supported” by the
JoeCtrl process,
not the LittleJoe
hardware

num_programsets Int 1-8 Number of programsets
stored on disk

programsetX Struct
ure

 Filename of the
configuration file
describing program set
#X

startProgramSet Int -1 – up to the
value of
“num_
programsets”

 Number of the
programset to load at
startup. A value of -1
means to load no
programset.

fanReqVar String Variable
name

 Name of the RTDB
variable used to control
the LittleJoe fan

It is assumed that
setting this variable
to “1” will start the
fan, and to “0” will
stop it.

fanCtrlActive Int 0-1 If 1, try to control the
fan using the previous
variable. If 0, ignore it.

A limitation of the
current FLAO
hardware is that a
single hardware
switch controls
both the LJ39 and
LJ47 fans. Only
one control loop
should be active.

fanOnTemp Int Any °C Temperature over
which the fan is turned
on

fanOffTemp Int Any °C Temperature under
which the fan is turned
off

Table	 10:	 Keywords	 for	 the	 “Gopt”	 (optical	 gain)	 process	

Keyword type Accepted
values

Unit Description Notes

gopt Float Any Initial optical gain
vaule, loaded at
startup on the BCU

Usually 1.0

nframes Int 1-10000 Number of frames to
record for the optical
gain analysis

Initial value, may be
changed from the GUI

mode int 0-671 Mode to use for
optical gain analysis

Deprecated, now
automatically detected
by the elab_lib

freq Float 1-200 Hz Modulation
frequency for optical
gain analysis

Deprecated, now
automatically detected
by the elab_lib

trackGain Float Any Gain of the tracking
loop

Initial value, may be
changed from the GUI

delay Float Any s Delay between
adjusting the optical
gain and saving new
data

Table	 11:	 Keywords	 accepted	 by	 WfsArb	 instances	

Name Type Accepted
values

Unit Notes

OP_MODES String
array

Any Defines the list of “operating modes”
available to the WFS. These operating
modes are described in
$ADOPT_SOURCE/PyModules/AdOpt/cf
g_W1.py.

WfsSpec string FLAOWFS,
LBTIWFS

 Defines the WFS name, should match the
one used for the current MsgD.

MinLoopFreq Float 1-1000.0 Minimum loop frequency accepted in the
ModifyAO command

MaxLoopFreq Float 1-1000.0 Maximum loop frequency accepted in the
ModifyAO command

MaxOvsFreq Float 1-1000.0 Maximum oversampling frequency
accepted by the Adaptive Secondary

MinHODark int 1-1000 Minimum no. of frames to average when
taking a dark frame with ccd39

MaxHODark Int 1-1000 Maximum no. of frames to average when
taking a dark frame with ccd39

MinTVDark Int 1-100 Minimum no. of frames to average when
taking a dark frame with ccd47

MaxTVDark Int 1-100 Maximum no. of frames to average when
taking a dark frame with ccd47

MinIRTCDark Int 1-1000 Minimum no. of frames to average when
taking a dark frame with IRTC

MaxIRTCDark Int 1-1000 Maximum no. of frames to average when
taking a dark frame with IRTC

MinSlopenull Int 1-1000 Minimum no. of frames to average when
taking a slopenull frame.

MaxSlopenull Int 1-1000 Maximum no. of frames to average when
taking a slopenull frame.

MaxOffsetXYCloop Float 0.6 mm Maximum accepted offset in closed loop.

INITIAL STATE String State name State from which the FSM is initialized.
Usually “PowerOff” or “Operating”

TelElevationVar String Variable
name

 Name of the RTDB variable which
contains the current telescope elevation.

TelRotatorVar String Variable
name

 Name of the RTDB variable which
contains the current telescope derotator
position.

RerotVar String Variable
name

 Name of the RTDB variable to write in
order to move the pupil rerotator.

Adc1Var String Variable
name

 Name of the RTDB variable to write in
order to move the adc wheel #1.

Adc2Var String Variable
name

 Name of the RTDB variable to write in
order to move the adc wheel #2

RotatorOffsetBin1 Float 0-360.0 degr
ees

Offset to apply to the pupil rerotator at
bin1.

RotatorOffsetBin2 Float 0-360.0 degr
ees

Offset to apply to the pupil rerotator at
bin2.

RotatorOffsetBin3 Float 0-360.0 degr
ees

Offset to apply to the pupil rerotator at
bin3.

RotatorOffsetBin4 Float 0-360.0 degr
ees

Offset to apply to the pupil rerotator at
bin4.

cameralensTempChec
k

Int 0 – 1 Activate(1) or deactivate (0) the
cameralens temperature check

cameralensTempMin Float -50/+50 °C Minimum temperature required for
cameralens operation

cameralensTempNum
ber

Int 0-9 Position in the powerboard temperature
array where the relevant cameralens
temperature is found.

Table	 12:	 Keywords	 accepted	 by	 CopleyCtrl	 instances	

Name Type Accepted
values

Unit Notes

iDriveNetAddr String Ip address or
hostname

Host to connect to.

iDriveNetPort Int 1-65536 Port to connect to

mvSpeed Float 1-100 Mm/s Stage movement speed

mvHighEnd Float any Mm Maximum accepted target position

mvLowEnd Float Any Mm Minimum accepted target position

stepsRatio Float Any Ratio between encoder steps and mm.

HomingPosition Float Any Mm Target position to trigger a homing
sequence

AbortPosition Float Any Mm Target position to trigger an abort
sequence

GoodWindow Float Any Mm Accepted positioning error

proportionalGain Int 1-9999 Proportional gain of the internal PID
loop. Defaults to 4500.

positiveLimitSwitch Int 0-9 I/O line to use as positive limit switch.
Zero means not used.

negativeLimitSwitch Int 0-9 I/O line to use as negative limit switch.
Zero means not used.

homeLimitSwitch Int 0-9 I/O line to use as home switch. Zero
means not used.

HomingMethod String POS or NEG Use either the Positive or Negative limit
switch to perform homing.

17. Calibration files

Calibration files are stored in this path:

$ADOPT_ROOT/calib/<system>/current/

In the following table, all filenames/path are relative from the “current” path shown before.

Filename/path Contents format
adc/calib.txt ADC elevation/dispersion angle

calibration table
ASCII

ao/table_<INSTRUMENT>_<mode>
[.badseeing].txt

AO parameters table ASCII

autocenter/ Calibration files for source centering ASCII
ccd39/backgrounds/binX Background files for binning X [1..4] FITS
Ccd39/LUTs/binX BCU lookup tables for binning X [1..4] ASCII
Ccd47/backgrounds/binX Background files for binning X [1..4] FITS
Ccd47/LUTs/binX BCU lookup tables for binning X [1..4] ASCII
Dsp_programs BCU DSP programs Binary
Fov.txt Field-of-view definition file ASCII
gains BCU pixel gain vectors FITS
Luci/backgrounds/binX LUCI background files for binning X FITS
Ncpa/<INSTRUMENT> NCPA tables for instrument ASCII
Pisces/backgrounds/binX PISCES background files for binning X FITS
Setups/<INSTRUMENT>_<MODE> Board setup files ASCII
Slopenulls/binX Slope null files for binning X FITS
Stage_transform.txt Stage transform matrix ASCII
Truesense/xx.fits Truth sensing reconstructors FITS
Tt/calib.txt Tip-tilt volts/micron calibration table ASCII

18. Table of wfs, adsec and AO status values and commands
accepted

18.1. Wfs command table

State Accepted commands
PowerOff Operate
Operating Off

Operate
SaveStatus

SaveOptLoopData
AntiDrift
EnableDisturb
AutoTrack
CalibrateHODark
CalibrateTVDark
CalibrateIRTCDark
StopLoop
PrepareAcquireRef
ModifyAO

AOPrepared Operate
PrepareAcquireRef
AcquireRef
StopLoop
AntiDrift
AutoTrack
CalibrateHODark
SaveOptLoopData
SaveStatus
CheckRef
ModifyAO
Off

AOSet CloseLoop
ModifyAO
AcquireRef
Operate
PrepareAcquireRef
StopLoop
AutoTrack
AntiDrift
EnableDisturb
SaveOptLoopData
SaveStatus
CalibrateHODark
CalibrateTVDark
CheckRef

Failure RecoverFailure (Operate)
LoopClosed PauseLoop

StopLoop
RefineLoop
OffsetXY
OffsetZ
AntiDrift
AutoTrack
EnableDisturb
SaveOptLoopData
SaveStatus

LoopPaused ResumeLoop
StopLoop
OffsetXY
OffsetZ
AntiDrift

AutoTrack
EnableDisturb
SaveOptLoopData
SaveStatus

18.2. AdSec Command table

18.3. AO Command table

