
Doc.No : FLAO 1/2016
Version : 2.0
Date : Dec. 2016

LBT-ADOPT
TECHNICAL REPORT

The Logger class

Fabio Tosetti, Luca Fini

INAF - Osservatorio di Arcetri

http://adopt.arcetri.astro.it/

Doc.No : FLAO 1/2016

Version : 2.0

Date : Dec. 2016

The Logger class

ABSTRACT

This brief document describes Logger a C++ class used to provide logging
support for the FLAO applications.

Doc.No : FLAO 1/2016

Version : 2.0

Date : Dec. 2016 1

The Logger class

Revision history

Version Date Description

1.0 March 2008 First edition (as a Wiki page)

1.1 December 2016 Re-edited as proper document and updated for
UAO

Doc.No : FLAO 1/2016

Version : 2.0

Date : Dec. 2016 2

The Logger class

1 Introduction

The Logger is a C++ class that provides a configurable and flexible way to view and save logging
data.

• Class name: Logger

• Location: $ADOPT ROOT/lib

• Files: Logger.h, Logger.cpp (Utils.h)

The public interface of the Logger class is easily understandable: please read the Logger.h file. To
have a general overview, please first have a look to the following paragraph.

2 Features

The Logger class provides a pool of ”user-defined” objects, defined by a specific name and logging level
(local settings): for this reason the Logger class will be called Logger pool, and each single logger
will be called Logger.

Only a unique Logger pool can exists for each process (singleton): there isn’t any way to have more
than one pool. The reason is that all the loggers inside the pool can be accessed from everywhere in
your code in a static way:

Example: Logger* myLogger = Logger::get(Logger::LOG LEV XXX, "LoggerName")

Note that:

• If the logger already exists, its current level is always preserved (the given LOG LEV XXX
doesn’ have any effect).

• If the name of the logger is not specified, the default logger named ”MAIN” is returned.

• If the level of the logger is not specified, the default level is used (Logger::LOG LEV DEFAULT).

The Logger pool is defined by some global settings, commons to each contained loggers:

• Parent name: the name of the process using the Logger pool. This should be set ONLY in the program main, and never changed.

• Log method: STDOUT, FILE, MSGD; the default is FILE (mutually exclusive, except MsgD,
see below)

Doc.No : FLAO 1/2016

Version : 2.0

Date : Dec. 2016 3

The Logger class

• Log file: the file, including the full path, where the data are logged (if method is FILE).

For each Logger belonging to the Logger pool the following levels are available: TRACE (6), DEBUG
(5), INFO (4), WARNING (3), ERROR (2), FATAL (1).

There are also 2 special levels: ALWAYS (-1), DISABLED (0).

A log level is used to:

• Set the Logger level: this can be done at the moment of the Logger instantiation (or later),
and defines the amount of information logged; the default is ERROR.

• Log a line: the line will be logged only if: 1) Logger setting is not DISABLED; 2) The given
level is less than the Logger setting.

A request with level ERROR or FATAL is logged also to MSGD (NB: if Logger setting is not DIS-
ABLED).

Example: myLogger->log(Logger::LOG LEV XXX, "This is a logging line")

Consider that the log level is only set when the named logger is created, and is NOT modified by the
following get(...). The only way to modify the log level ii using the object’s method set(LogLevel).

Example: myLogger->setLevel(Logger::LOG LEV YYY)

2.1 Log method FILE

Here some details about the global log method FILE.

The Logger pool allow to set both the file name and the file path:

static void setLogFile(string fileName, string filePath, bool renaming = false) throw(LoggerFatalException);

The extension ”.log” is always added to the log file name.

Some default values are provided:

• Logger::LOG FILE DEFAULT = ”UNKNOWN-PROCESS”

• Logger::LOG PATH DEFAULT = ”/tmp”; this is used also if the given filePath doesn’t exists
or is not writable

The Logger pool provides two static methods to setup the log to file:

• Logger::setLogFile(string fileName, string filePath, bool renaming)

Doc.No : FLAO 1/2016

Version : 2.0

Date : Dec. 2016 4

The Logger class

• Logger:::setMethod(int method)

Please see Logger.h for detailed explaination.

The Logger pool also perform a transparent log file record keeping, renaming a ”full” file to an
archive file. A log file is considered ”full” when the number of logged lines is equal to Logger::MAX LINES PER LOGFILE.
This task is transparent because the client (usually an AOApp) can continue to log without taking
care of the archives.

Given a log file named PROCESS NAME.log, the archived file is PROCESS NAME.secsFrom1Jan1970.log

(see Utils::timeAsString() method).

3 AOApp

It’s important to understand where and why your AOApp is logging.

Each AOApp defines the following config parameters related to the logger: LogLevel and LogMethod.
These parameters ar not mandatory, and their default values (see AOApp.h) are:

• LogLevel = 2 (ERROR)

• LogMethod = 2 (FILE)

The path used for the logging is got from $ADOPT LOG environment variable; if the variable
doesn’t exists or is set to a wrong directory (not existing or not writable), a default directory is used
(see AOApp.h, AOApp::DEFAULT LOG PATH) .

The name of the log file is obtained concatenating the config file parameters MyName and ID, just to
have an unique filename (in the same way the AOApp register itself in MsgD).

Because all these parameters (name, level and method) are known only AFTER the configuration is
loaded, but of course the logging must be provided also BEFORE, a temporary log file name is used
(aopp [pid].log) and then the file is renamed. This means that the configuration loading is
always logged to the file aopp [pid].log with a default logger level statically defined by AOApp (see
AOApp.h, AOApp::CONFIG LOADER LOG LEVEL).

NOTE that, if a problem occurs before the log file is renamed (i.e. in configuration reading), the log
file will have the temporary name.

Doc.No : FLAO 1/2016

Version : 2.0

Date : Dec. 2016 5

The Logger class

3.1 Switching to log method STDOUT

Let’s see the bahaviour of the Logger when the log method is switched to STDOUT, becuase it could
appear a little complicated

As mentioned above, th default logging method is FILE. When an AOApp starts, immediately instanti-
ates a Logger named ”MAIN”: the Logger pool initialize the log filename to aoapp [pid].log, and this
log file is created in $ADOPT LOG (or, if $ADOPT LOG not set, in Logger::LOG PATH DEFAULT).

As soon as the log method is switched to STDOUT, the file aoapp [pid].log is archived, so you will
find the archive (aoapp [pid].time.log) it in the log path; depending on the log level, it could be
empty. Then, when the AOApp load its name from the config file, the new name for the config file is
set: it will be used when you set the method FILE again.

3.2 Implementation

The Logger is implemented as a singleton object containing a collection of ”named” Logger objects.
This collection is a STL map, which maps a ”logger name” to a ”logger reference”.

4 Log files

The Logger manages creation of log files in a directory structure according to the date, as follows:

• The initial file is created in the directory:

$ADOP LOG/year/month/day

With the name built as described above.

• year/month/day directories are created as needed.

• If the file is already existent, it is reopened in append mode.

• At midnight, the current file is closed and a new one is created in the proper directory.

	Introduction
	Features
	Log method FILE

	AOApp
	Switching to log method STDOUT
	Implementation

	Log files

