
LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 1

LBT PROJECT
2x8,4m TELESCOPE

 Doc. No. : 481s011
 Issue : c
 Date : March 15, 2007
 Issued by : Jose Luis Borelli

LBT PROJECT

2 X 8,4m OPTICAL TELESCOPE

Instrument Interface for the
LBT Telescope Control System,

C ++ Interface Control Document

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 2

Signature Date
Prepared Jose Borelli March 2, 2007
Reviewed Martin Kuerster, Norm Cushing,

Dave Thompson, Chris Biddick,
Wolfgang Gaessler, Michele de la
Peña

March 15, 2007
July 10, 2007

Approved

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 3

 1 Revision History

Issue Date Changes Responsible
a 02-Mar-2007 First draft Jose Borelli
b 15-Mar-2007 First revision. Jose Borelli
c 15-Jul-2007 New classes added, Hotspot and Offset.

New rotators commands added to the
commands set. Strings variables
changed to enumerated types.

Jose Borelli

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 4

 2 Table of contents

 1 Revision History..3
 2 Table of contents...4
 3 List of abbreviations..6
 4 About this document...7
 4.1 Purpose...7
 4.2 Notes..7
 5 Introduction...8
 6 Functionality and Observation modes...8
 6.1 Control Functionality...9
 6.1.1 Authorizing with the TCS..9
 6.1.2 Giving up control...10
 6.1.3 Status..10
 6.2 Basic Functionality...10
 6.2.1 Pointing...10
 6.2.2 Tracking..11
 6.2.3 Offset...11
 6.2.4 Focusing..12
 6.2.5 Guiding..13
 6.3 Alignment Functionality...13
 6.4 Adaptive Optic System...15
 7 Command set at the IIF-TCS...17
 7.1 AOPreset...33
 7.2 AOAcquireRef...36
 7.3 AORefine..38
 7.4 AOStart...41
 7.5 AOOffsetXY...43
 7.6 AOOffsetZ...45
 7.7 AOCorrectModes..47
 7.8 AOStop...49
 7.9 AOPause...51
 7.10 AOResume..53
 7.11 AOUserPanic..55
 7.12 Authorize..57
 7.13 CancelCommand..59
 7.14 Deauthorize..60
 7.15 GetCommandStatus..62
 7.16 GetMultiParameter...64
 7.17 GetParameter...66
 7.18 GetRotatorTrajectory...68
 7.19 LogEvent..70
 7.20 Move ..72

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 5

 7.21 MoveFocus...75
 7.22 MoveXY...77
 7.23 MoveXYZ..79
 7.24 OffsetGuiding...81
 7.25 OffsetPointing...83
 7.26 PauseGuiding...86
 7.27 PresetGuiding...87
 7.28 PresetTelescope...89
 7.29 ResumeGuiding..93
 7.30 RotateCommon...94
 7.31 RotatePrimary..96
 7.32 RotateZ...98
 7.33 RotAdjustPosition (Prototype)..100
 7.34 RotHold (Prototype)...102
 7.35 RotMaximizeTime (Prototype)..104
 7.36 RotServicePosition (Prototype)..106
 7.37 RotSetRotator (Prototype)..108
 7.38 RotTrack (Prototype)..110
 7.39 RotNextPosition (Prototype)..112
 7.40 SendWavefront...114
 7.41 SetMultiParameter...116
 7.42 SetParameter...118
 7.43 Standby..120
 7.44 StartGuiding...122
 7.45 StepFocus...123
 7.46 StopGuiding..125
 7.47 TelescopeMove (Prototype)..126
 7.48 TelescopeRotate (Prototype)..128
 7.49 TelescopeScale (Prototype)..130
 7.50 TipTilt...132
 7.51 UpdateGuidestar..134
 8 Process flow. Usage..136
 8.1 Including IIF into the project...136
 8.2 Creating IIF and Authorizing with TCS..136
 8.3 Command request process ..138
 8.4 Command result evaluation...140
 8.5 De-authorizing the instruments. Destroying IIF instance............................143
 8.6 Full example...145
 9 References...149
Appendix A : Global definitions ...150
Appendix B : TCS-IIF commands status...153

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 6

 3 List of abbreviations

Abbreviation Description
AGW Acquisition, Guiding, and Wavefront sensing
ALT Altitude
AOS Adaptive Optic Subsystem
AOS-Sup AO Supervisor
AZ Azimuth
CSQ Instrument Interface Server
DEC Declination
GCS Guiding Control Subsystem
ICS Instrument Control Software
IIF Instrument InterFace
IRA Initial Rotation Angle
LBT Large Binocular Telescope
LBTI Large Binocular Telescope Interferometer
LBTO LBT Organization
LINC LBT INterferometric Camera
LN Linc Nirvana
LUCIFER LBT NIR spectroscopic Utility with Camera and Integral-Field

Unit for Extragalactic Research
M1 Primary Mirror
M2 Secondary Mirror
M3 Tertiary Mirror
MODS Multiple Object Double Spectrograph
NIRVANA Near-InfRared / Visible Adaptive iNterferometer for

Astronomy
OPE OPtical Element
PCS Pointing Control Subsystem
PEPSI Postdam Echelle Polarimetric and Spectroscopy Instrument
RA Right Ascension
SFP Standard Focal Plane
TBD To Be Defined
TCS Telescope Control System
WF Wave Front

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 7

 4 About this document

The Instrument Interface (IIF) is the software interface which allows the
instrument software to communicate with the Telescope Control System (TCS),
in order to issue commands which provide control, allow a transparent
communication with the different subsystem and acquire status information.
This document specifies the Instrument-Telescope control software, the different
structures and the command set.

 4.1 Purpose

The purpose of this document is to serve as a reference manual for software
developers that want to use the C++1 Instrument Interface library to
communicate with the TCS, describing the set of commands that LBT will
provide to all the instruments.

 4.2 Notes

The document was divided into different sections. Each section has a flat
structure and an unnumbered sequence of sub sections. The aim is to present
each command or new topic in a confined space so that it can be quickly
grasped. The list of commands presented in section 7 are in alphabetical
order. At the moment, some of these commands are prototypes and they may
change in the future.

1 The C interface is described in another document, 481g010d. See reference [1].

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 8

 5 Introduction

The Instrument Interface is distributed to the LBT instrument software teams as
a set of libraries. These libraries must be included into the instrument control
software projects in order to issue commands.
The instrument is required to identify itself to the TCS. This is done by specifying
a predefined, unique ID value during the instantiation of an IIF object. This
globally unique identifier is composed of a instrument ID (1 -24 characters) plus
a string, which determines the focal station and the telescope side to be
controlled by the commanding instrument.

When an instrument calls an IIF command, this action triggers processing inside
the TCS. The instrument then, has the option of halting the execution of its
program thread until the requested TCS-internal processing has finished or,
alternatively, the instruments' control code can proceed with its own program
thread and decide to periodically query the status of the IIF command.

 6 Functionality and Observation modes

All the astronomical instruments require similar basic functionalities from the
TCS, which are shown in figure 6.1. Within this chapter we describe the
functionalities in a general form.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 9

Figure 6.1:Use cases of the basic telescope functionalities.

 6.1 Control Functionality

 6.1.1 Authorizing with the TCS

Under normal operating conditions, only a single instrument can have full
control of a telescope side; this control is obtained through the

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 10

authorization command. When an instrument is authorized for a telescope
side, it is the only instrument which may successfully issue a majority of
the commands. Nevertheless, there are some functions the instruments can
use without authorization, like requesting status or access to a limited set
of rotator commands.

 6.1.2 Giving up control

When the instrument is not using anymore one or both sides of the
telescope, the deauthorize command must be issued, in order to yield all
control of the corresponding side to the TCS.
Note, that multiple authorizations/deauthorizations from the same
instrument are allowed by the CSQ, maintaining an internal count. A final
deauthorize happens when the count goes to zero (more details in section
8.5 and table 8.3 as well). This is useful for instance, if the ICS is multi-
threaded. Each thread that needs to interact with the TCS must authorize
itself.
LBC is using this feature to authorize itself, and contemporaneously, the
LBC active-optics program authorizes itself (a second authorization) to
send the Zernickes it calculates from the pupil images.

 6.1.3 Status

The instruments are able to ask for status of the TCS parameters and the
telescope situation. A status request could be on remaining ranges of
optical elements (primary, secondary, etc.), actual coordinates (the
telescope is pointing on), enclosure (open or closed), ambient temperature,
etc. All this information is not provided in real-time.
In the same way, the instrument is able to set a parameter or a group of
parameters in the data dictionary, in order to give status information about
the instrument to the TCS.

 6.2 Basic Functionality

 6.2.1 Pointing

Pointing defines where the telescope is looking on the sky in conjunction
with where the astronomical object is imaged in the instrument focal plane.
In order to point the telescope, the mount is moved to a position computed
by the PCS which accommodates the observer request, accounts for a
variety of observational corrections, and derives tip/tilt for the mirrors as

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 11

necessary.
In order to begin an observation cycle by slewing the telescope to the
target position, IIF has the presetTelescope() command. This IIF
command has a large number of arguments, which are described in detail
in the section 7.28, PresetTelescope.

Pointing sequence

 1. The instrument sends the telescope the preset information for each
side (left, right or both) that is to be preset. Presetting both sides
only makes sense for dual-side instruments being controlled through
a single interface.

 2. The telescope checks if the instrument is authorized.

 3. The telescope checks the preset parameters for sanity.

 4. The PCS applies proper motion and precession corrections, as
necessary, to the input target and guide star objects.

 5. The PCS computes tracking polynomials for the mount.

 6. The Telescope performs the Guide Star Acquisition, picking a guide
star from the set of passed guide stars in the order they were passed.

 7. If steps 2 through 6 succeed, the telescope is on a new position,
tracking, guiding and controlling active optic as well.

 8. The Telescope informs the Instrument about success or failure of the
preset operation.

 6.2.2 Tracking

Tracking means to follow the science target in open loop, without guiding.
It will be possible to follow a non-sidereal target (this functionality is not
yet implemented as of July 2007), and in some occasions it is possible to
switch-off the tracking.

 6.2.3 Offset

During an observation it is often needed to offset the telescope; this means
to move a small distance in RA and DEC. This might happen in two
different ways, Non-guided offset or Guided-offset.
In the first one, the telescope moves a small delta RA and DEC but the

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 12

guiding loop opens because the distance is too large or the accuracy is not
so relevant.
In the second case, the telescope moves a small delta RA and DEC, but the
guiding loop is kept closed. This increases the accuracy. The guiding
system has to take care of the jump the guide star will experience and has
to reference the position of the guide star to its initial position.
IIF provides two commands for this purpose, OffsetGuiding and
OffsetPointing (more details in sections 7.24 and 7.25):

 6.2.4 Focusing

The optomechanics of telescope and instrument are normally not that
perfect to be in focus without adjusting some parts within the optical path.
Also, as the structure of the telescope and instrument changes with
different temperatures, the focus has to be adjusted from time to time.
Focusing needs information from the instrument. With LBT in adaptive
mode this will be handled by the AOS.

Note, that for all Gregorian instruments, the Acquisition, Guiding, and
Wavefront sensing units (AGw/W units) will accurately maintain the focus
of the telescope relative to the AGw/W units doing the wavefront analysis.
So, to effect an offset of the telescope with respect to the instrument, the
w/W stage must be moved relative to the instrument. Offsetting the w/W
stage in z will automatically drag the focus along with it because of the
active/adaptive feedback. For seeing-limited instruments, it is likely
sufficient to allow the TCS to offload the focus to whatever optic it thinks is
best. The interferometers will likely want to specify that any offloading of
the focus is done to specific optical elements (or groups of them) in order
to preserve (or change) the plate scale at the focal plane.

Positioning the Focus
1.The instrument sends the telescope a request to move the respective
OPE to a new absolute focus position, specified by:

(a) the new position (in millimeters) of the optical element in the z-
axis, and

(b) the required OPE.
2.The telescope checks if the positioning information requested in step 1 is
within range.
3.In case of success of step 2, the telescope positions the OPE to the focus
desired position.
 4.The telescope confirms success or failure of the operation to the
Instrument.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 13

Incrementing/Decrementing the Focus
1.The instrument sends to the telescope a request to change the respective
OPE focus position relative to its current position, specified by:

(a) the difference (in millimeters) to the current position of the
optical element in z-axis, and

(b) the required OPE.
2.The telescope checks if the positioning information requested in step 1 is
within range.
3.In case of success of step 2, the telescope adapts the focus by the
requested difference (Delta).
4.The telescope confirms success or failure of the operation to the
instrument.

More information about these commands in section 7.21 and 7.45.

 6.2.5 Guiding

The telescope provides a non-perfect open loop tracking of the mount. To
optimize the tracking for errors due to friction, mechanical imperfection,
or flexure, the telescope employs a guiding system.
In order for the guiding control subsystem (GCS) to perform its duties,
delivering guiding and wavefront sensing information to the TCS, the GCS
controls off-axis AGW units and their cameras for image acquisition.

 6.3 Alignment Functionality

The optical axis of the instrument and the telescope have to be aligned, as
well as the right and left sides with respect to each other. Such alignment
finally happens in the combined focus with the help of stars.
The telescope-to-instrument alignment requires adjustments of the optical
elements (OPE). It is possible to move the primary (M1), the secondary (M2)
and tertiary (M3) mirrors in different degrees of freedom.
IIF provides several commands to perform these duties, which are described
in the next sections.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 14

Figure 6.2:Use cases to move the telescope for alignment / adjustments purpose.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 15

Figure 6.3: Coordinate system as used for all the alignment movements.

 6.4 Adaptive Optic System

The Adaptive Optics Subsystem (AOS) is the subsystem of TCS providing all
the functions needed for interaction between the LBT Adaptive Optics system
and the rest of the telescope, including instruments.

AO System Operating Modes

When operating in support of an observation the AO System will provide four
modes of operation:

• FIX-AO. Fixed Mode Operation. It is the seeing limited mode where the
Adaptive Secondary mirror holds a fixed "flat" shape defined by a pre-
calibrated vector of mirror commands. Depending on the particular kind
of observation a specific "flat" vector may be selected.

• TTM-AO. Tip-Tilt Mode Operation. It is an AO mode with only tip-tilt
correction performed by the secondary mirror.

• ACE-AO. Auto Configured Adaptive Optics Operation. It is the full AO
corrected mode, with AO loop parameters automatically selected by the
AO System based on reference source characteristics.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 16

• ICE-AO. Interactively Configured Adaptive Optics Operation. It is a full
AO corrected mode where the observer is given the possibility to adjust
AO loop parameters.

TCS-IIF provides a set of commands, that correspond exactly to the AOS
commands, in order to handle this subsystem. More details in sections 7.1 to
7.11 (AO prefix) and reference [3] as well.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 17

 7 Command set at the IIFTCS

Prior to describing the different IIF commands we will define some important
structures and classes the instruments will need2. These classes and structures
are distributed in several files. Nevertheless, including IIF.h will be enough for
the instruments to use the libraries.
In order to understand how to include and to use them, please see section 8.
The global definitions and constants showed in this document are defined in the
file IIFGlobals.h. You will find the complete list in Appendix A : Global
definitions .

The Coordinates System enumerated type

This enumerated type defines the different coordinates system3.

 coordType
 { COORD_RADEC_SKY, COORD_RADEC_FOCAL, COORD_ALTAZ,

COORD_FOCAL_PIX, COORD_FOCAL_MM};

where COORD_RADEC_SKY represents the equatorial coordinates on the sky,
COORD_RADEC_FOCAL represents the equatorial coordinates on the focal plane,
COORD_ALTAZ represents the ALT/AZ coordinates, COORD_FOCAL_PIX represents
the instrument focal plane coordinates in units of pixels and COORD_FOCAL_MM
the instrument focal plane coordinates in units of millimeter and

The Optical Element enumerated type

The purpose of this enumerated type is to represent the respective optical
element.

 opeType
 { M1, M2, M3, M1M2, M1M3, M2M3, M1M2M3, MOUNT, HEXAPOD, DEFAULT};

where M1 represents the primary mirror, M2 the secondary mirror, M3 the
tertiary mirror, M1M2, M1M3, M2M3 and M1M2M3 represent the different
combinations of all of them. MOUNT refers to the telescope mount, HEXAPOD
represents the hexapod support structure for M2, and DEFAULT is defined
according to the specific command.

2 As these classes/structures are used as arguments in many of the IIF commands.
3 In the near-term TCS will support COORD_RADEC_SKY, COORD_RADEC_FOCAL, and
COORD_FOCAL_PIX.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 18

The Movement enumerated type

This enumerated structure represents the type of movement to use.

 moveType
 { MV_REL, MV_ABS};

where MV_REL represents a relative movement to the current position, and
MV_ABS an absolute one, with respect to the coordinates in the last
PresetTelescope.

The Rotator enumerated type

Enumerated type to represent the different instrument's rotator modes.

 rotatorType
 { ROTATOR_PAR, ROTATOR_PSTN, ROTATOR_NATIVE, ROTATOR_GRAV,

ROTATOR_IDLE };

where ROTATOR_PAR represents the parallactic angle, which is vertical with
respect to the horizon. ROTATOR_PSTN relative to the north. ROTATOR_NATIVE
means to use the rotator's native reference frame. ROTATOR_GRAV means to use
the gravitational angle, and ROTATOR_IDLE for those instruments that will not
use the rotator at all.

The Rotation Center enumerated type

Enumerated type to represent the rotation center. See section 7.48 for further
details.

 rotcenterType
 { M1, M2, M3, FS_PRIME, FS_DIRECTGREGORIAN, ROT_CENTER_POS };

where M1 represents the primary mirror, M2 the secondary mirror, M3 the tertiary
mirror, FS_PRIME represents the focal station prime focus, FS_DIRECTGREGORIAN
represents the focal station direct Gregorian and ROT_CENTER_POS represents an
user defined point of rotation.

The AO Mode enumerated type

The meaning of this enumerated type is to represent the different AO operational

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 19

modes.

 AOmodeType
 { FIX_AO, TTM_AO , ACE_AO , ICE_AO};

where FIX_AO represents the Fixed Mode Operation, TTM_AO represents Tip/Tilt
operation, ACE_AO Auto Configured Adaptive Optics Operation, and ICE_AO
Interactively Configured Adaptive Optics Operation. See section 6.4 for further
details.

The Operational Mode enumerated type

Represents the operational modes of the telescope.

 modeType
 { MODE_STATIC, MODE_TRACK, MODE_GUIDE, MODE_ACTIVE, MODE_ADAPTIVE,

MODE_INTERFEROMETRIC };

MODE_STATIC, slews the telescope to the requested location on sky and stops.
MODE_TRACK sends the telescope to the coordinates and enters open-loop
tracking. The guider stage is not moved, and the instrument does not need to
supply guide stars.
MOD_GUIDE, the guided mode where both tracking and guiding are in operation.
This requires a guide star from the instrument. The guider stage must move to
the appropriate location, and the guide star is acquired on the AG, and XY
guiding initiated at wherever the star is located on the AG chip.
MODE_ACTIVE,the active mode where tracking, guiding and active optics are
engaged. In addition, once XY guiding has started, the AGw sends a pointing
offset to the telescope to move the star to the w-unit's entrance aperture. The
system goes through the startup sequence and ends closed-loop in both XY
guiding and wavefront sensing.
MODE_ADAPTIVE, the adaptive mode where tracking, guiding, and adaptive optics
are engaged. It is the big-W that must end up closed-loop at high speed for this
mode.
MODE_INTERFEROMETRIC, this mode is ill-defined at this time. It could be used as
a trigger for the TCS to set certain defaults in support of interferometric modes.

The Equinox enumerated type

 equinoxType
 { J2000, ICRS };

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 20

where J2000 represents the equatorial coordinate system based on the mean
dynamical equator and equinox of the J2000 epoch, and ICRS represents the
International Celestial Reference System.

The Filter enumerated type

Represents the different filters.

 filterType
 { U, V, B , R, FILTER_NONE };

The Color enumerated type

Represents the different color types of the object.

 colorType
 { U_B , B_V , H_K , COLORTYPE_NONE };

The Proper Motion structure

The proper motion of an astronomical target is the component of the space
motion of the source perpendicular to the line of sight.

 ProperMotionType

• double coord1
 Purpose: to define the first coordinate of the proper motion for RA.
 Description: double value.
 Unit: marcsec/year
 Range or possible values: [-11000.00, 11000.00]
 Default value: 0.0

• double coord2
 Purpose: to define the second coordinate of the proper motion for DEC.
 Description: double value that represents the second coordinate of the proper motion.
 Unit: marcsec/year
 Range or possible values: [-11000.00, 11000.00]
 Default value: 0.0

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 21

The Apparent Magnitude structure

The apparent magnitude (m) of a star, planet or other celestial body is a measure
of its apparent brightness as seen by an observer on Earth.

 MagnitudeType

• double apparentMagnitude
 Purpose: to define the apparent brightness of the star as seen by an observer on Earth.
 Description: double value representing the apparent magnitude.
 Unit: unitless
 Range or possible values: [-27.0 , 40.0]
 Default value: -

• filterType filter
 Purpose: to define the wavelength filter for the magnitude.
 Description: enumerated value representing the wavelength filter.
 Unit: unitless
 Range or possible values: U | V | B | R | FILTER_NONE
 Default value: -

• double color
 Purpose: to define the color index of the object.
 Description: double value representing the color index.
 Unit: none
 Range or possible values: [-2.0, 2.0] | COLOR_NONE
 Default value: -

• colorType colorType
 Purpose: to define the color type of the object.
 Description: enumerated value representing the color type.
 Unit: unitless
 Range or possible values: U_B | B_V | H_K | COLORTYPE_NONE
 Default value: -

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 22

The Offset class

The term “offset” used in this section is really referring to two delta terms. These
are relative deltas, referenced to the last coordinates provided. The coordinate
system of the offset does not have to be the same as the target.

The constructor of the class has the following parameters:

• double coord1
 Purpose: to define the offset in RA, ALT or xi.
 Description: double value to represent the first coordinate of the offset.
 Unit: COORD_ RADEC _SKY = radians

 COORD_RADEC_FOCAL = radians
 COORD_ ALTAZ = radians
 COORD_FOCAL_PIX = pixels
 COORD_FOCAL_MM = millimeters

 Range or possible values: COORD_RADEC_SKY = [-PI , PI]
 COORD_RADEC_FOCAL = [-PI , PI]
 COORD_ALTAZ = [-PI/2, PI/2]
 COORD_FOCAL_PIX = defined by the instrument.
 COORD_FOCAL_MM = defined by the instrument.

 Default value: 0.0
• double coord2

 Purpose: to define the offset in DEC, AZ or eta.
 Description: double value to represent the second coordinate of the offset.
 Unit: COORD_ RADEC _SKY = radians

 COORD_RADEC_FOCAL = radians
 COORD_ ALTAZ = radians
 COORD_FOCAL_PIX = pixels
 COORD_FOCAL_MM = millimeters

 Range or possible values: COORD_RADEC_SKY = [-PI , PI]
 COORD_RADEC_FOCAL = [-PI , PI]
 COORD_ALTAZ = [-PI, PI]
 COORD_FOCAL_PIX = defined by the instrument.

 COORD_FOCAL_MM = defined by the instrument.
 Default value: 0.0

• coordType system
 Purpose: to define the coordinate system of reference for the coordinates.
 Description: enumerated value to represent the coordinate system of reference for the

 coordinates. See description above.
 Unit: unitless
 Range or possible values: COORD_RADEC_SKY | COORD_RADEC_FOCAL | COORD_ALTAZ |

 COORD_FOCAL_MM | COORD_FOCAL_PIX
 Default value: COORD_RADEC_FOCAL

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 23

The Hotspot class

The hotspot is given in instrument focal plane coordinates. These are absolute X
and Y values specific to the detector. The units are pixels.

Figure 7.1: Detector during observation and the concept of Hotspot.

The constructor of the class has the following parameters:

• double coord1
 Purpose: to define the first coordinate of the hotspot.
 Description: double value to represent the X coordinate of the hotspot.
 Unit: pixels
 Range or possible values: defined by the instrument.
 Default value: -

• double coord2
 Purpose: to define the second coordinate of the hotspot.
 Description: double value to represent the Y coordinate of the hotspot.
 Unit: pixels
 Range or possible values: defined by the instrument.
 Default value: -

xxx
xx

xxxxxx

rcxxx

h
h hs h

h

c

N

M

1
1

Detector (imaging)
c = detector center
rc = rotation center
hs = hotspot(x=3,y=3)
h = dither positions around the hs
x = bad pixels

Note: In this example, the hotspot (hs) is the
best position on the detector for the
observation.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 24

The Position class

Defining positions and all astronomically relevant information about the science
target to be observed and the guide-stars, Position can exist in different
coordinate systems, but all angles must be specified in radians.

The constructor of the class has the following parameters:

• double coord1
 Purpose: to define the first coordinate of the specified system in RA, ALT or xi.
 Description: double value to represent the first coordinate of position.
 Unit: COORD_ RADEC _SKY = radians

 COORD_ ALTAZ = radians
 Range or possible values: COORD_RADEC_SKY = [0.0 , 2PI]

 COORD_ALTAZ = [0.0 , PI/2]
 Default value: -

• double coord2
 Purpose: to define the second coordinate of the specified system in DEC, AZ or eta.
 Description: double value to represent the second coordinate of position.
 Unit: COORD_ RADEC _SKY = radians

 COORD_ ALTAZ = radians
 Range or possible values: COORD_RADEC_SKY = [-1.0 , 2PI]

 COORD_ALTAZ = [-PI/2, 5PI/2]
 Default value: -

• coordType system
 Purpose: to define the coordinate system of reference for the coordinates.
 Description: enumerated value to represent the coordinate system of reference for the

 coordinates. See coordType definition above, page 17.
 Unit: unitless
 Range or possible values: COORD_RADEC_SKY | COORD_ALTAZ
 Default value: COORD_RADEC_SKY

• equinoxType equinox
 Purpose: to define the value of the equinox for purpose of precession.
 Description: enumerated value representing the reference equinox or system of

 coordinates.
 Unit: none
 Range or possible values: J2000 | ICRS at this time4.
 Default value: J2000

• double epoch
 Purpose: to define the value used in conjunction with proper motion values to reference

 the coordinates to the equinox.
 Description: double value representing the epoch of the given coordinates.
 Unit: year
 Range or possible values: Valid date.
 Default value: 2000.00

• ProperMotionType *propmotion (optional)
 Purpose: to specify the potential proper motion of the celestial object described by the

4 Note: “B1950” will be supported in the future.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 25

 position.
 Description: pointer to a ProperMotionType struct (see definitions above).
 Unit: See ProperMotionType definition above.
 Range or possible values: see definition above.
 Default value: NULL (do not use proper motion).

• MagnitudeType *magnitude (optional)
 Purpose: to specify the apparent magnitude and filter of the celestial object.
 Description: pointer to a MagnitudeType struct (see definitions above).
 Unit: See description above.
 Range or possible values: See description above;
 Default value: NULL (do not use the magnitude).

• unsigned int wavelength (optional)
 Purpose: to compute the object's atmospheric refraction correction.
 Description: integer value specifying the effective wavelength of the target.
 Unit: nanometer.
 Range or possible values: [300 , 20000]
 Default value: 500

Position public member functions

 Position (double coord1, double coord2,
coordType system=COORD_RADEC_SKY,
equinoxType equinox=J2000,
double epoch=2000.00,
ProperMotionType *propmotion=NULL,
MagnitudeType *mag=NULL,
unsigned int wavelength=500)

 The class's parameterized Constructor.

virtual ~Position ()
 The class's Destructor.

Position (const Position &)
The class's Constructor.

Position & operator= (const Position &)
bool operator== (const Position &) const
bool operator!= (const Position &) const

Operators =, ==, !=

double Getcoord1 () const
 Getter method for the coord1 property of this class.

double Getcoord2 () const
 Getter method for the coord2 property of this class.

coordType Getcoordsystem () const
 Getter method for the coordinate system property of this class.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 26

equinoxType Getequinox () const
 Getter method for the equinox property of this class.

double Getepoch () const
 Getter method for the epoch property of this class.

ProperMotionType * Getpropermotion ()
 Getter method for the propermotion property of this class.

MagnitudeType * Getmagnitude ()
 Getter method for the magnitude property of this class.

unsigned int GetWavelength () const
 Getter method for the wavelength property of this class.

ProperMotionType getProperMotion () const
 Getter method for the propermotion property of this class.

MagnitudeType getMagnitude () const
 Getter method for the magnitude property of this class.

void Setcoord1 (double newVal)
 Setter method for the coord1 property of this class.

void Setcoord2 (double newVal)
 Setter method for the coord2 property of this class.

void Setcoordsystem (coordType newVal)
 Setter method for the coordsystem property of this class.

void Setequinox (equinoxType newVal)
 Setter method for the equinox property of this class.

void Setepoch (double newVal)
 Setter method for the epoch property of this class.

void Setpropermotion (ProperMotionType *newVal)
 Setter method for the propermotion property of this class.

void Setmagnitude (MagnitudeType *newVal)
 Setter method for the magnitude property of this class.

void Setwavelength (unsigned int newVal)
 Setter method for the wavelength property of this class.

bool hasMagnitude ()
Return true if the magnitude was specified. Otherwise false.

bool hasProperMotion ()
Return true if the propermotion was specified. Otherwise false.

bool hasWavelength ()
Return true if the wavelength was specified.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 27

The MultiDDEntry class

This class is used to create a list of data dictionary entries that will be requested
from the TCS. Also, can be used to set a block of instrument specific entries into
the data dictionary.
The instrument control software (ICS) needs a MultiDDEntry object in order to
use the commands GetMultiParameter and SetMultiParameter as well
(described in section 7.16 and 7.41).

MultiDDEntry();
MultiDDEntry(queue<string> entries);
MultiDDEntry(queue<string> entries, queue<string> values);
virtual ~MultiDDEntry();
MultiDDEntry& operator= (MultiDDEntry &);
copy-constructor and assignment-operator

void SetMultiEntries (queue<string> entries);
void SetMultiValues (queue<string> values);
void SetMultiEntries (queue<string> entries, queue<string>

values);
Setter method for the Multiple values/entries property of the
instance.

vector<string> GetMultiEntries ();
vector<string> GetMultiValues ();

Getter method for the Multiple values/entries property of the
instance.

void PushEntry(string entry);
void PushEntry(string entry, string value);
void PushValue(string value);

Push methods, to push a new value or a new entry into the queue

void PopEntry();
void PopValue();

Pop methods, to remove an entry or value from the queue

string FrontEntry() const;
string FrontValue() const;

Front methods, return the front entry or value of the queue

bool empty() const;
bool emptyEntry() const;
bool emptyValue() const;

empty methods, return true if the queue is empty, otherwise false.

unsigned int size() const;
unsigned int sizeEntry() const;
unsigned int sizeValue() const;

size methods, return the number of entries in the queue.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 28

void Clear();

clear method, cleans the queues. The number of entries in the queues
after Clear() is 0.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 29

Wavefront class

This class contains information about the wave front correction to account for
the optical aberration. The ICS uses this class in order to issue the
SendWavefront() command. See more details in section 7.40

Public Member Functions

WaveFront (double coeffs[POLY_ORDER])
The class's parametized Constructor.

WaveFront ()
The class's Constructor.

virtual ~WaveFront ()
The class's Destructor.

WaveFront (const WaveFront &)

WaveFront & operator= (const WaveFront &)
bool operator== (const WaveFront &) const
bool operator!= (const WaveFront &) const

double * GetCoefficients (double dest[POLY_ORDER]) const
Getter method for the Coefficients property of the instance.

double GetCoefficient (unsigned int order)
Returning a single coefficient of the instance.

void SetCoefficients (double coeffs[POLY_ORDER])
Setter method for the Coefficients property of the instance.

void SetCoefficient (double coeff, int order)
Setting a single coefficient of the instance to a new value.

vector<double> getCoefficients ()

double getCoefficient (unsigned int order)

void setCoefficients (vector< double > coeffs)

void setCoefficient (double coeff, int order)

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 30

The Result class

This class defines the results that are returned to the Instrument when
commands are sent to the telescope (to the CSQ).
Results are immediately returned by the respective IIF methods. This means
that the operation inside the TCS initiated by the IIF command may not have
finished by the time the IIF method call returns.
The status of an initiated operation can be queried using the command handle
inside the Result instance, as we describe in section 8.4.
However it is possible to halt the program thread’s execution until the TCS has
finished the command processing (“sleep wait”, the CPU is not occupied by the
wait). To achieve this, the IIF user simply calls the block() method on the
command handle that is associated with the requested command.

Result attributes

• CSQHandle* commandHandle
 Purpose: to define the command handle associated with the Result instance.
 Description: reference to a CSQHandle object.
 Unit: unitless.
 Range or possible values: -
 Default value: NULL.

• int resCode
 Purpose: to define the result code, to indicate the success of sending the command to

 the TCS.
 Description: integer value representing the result code.
 Unit: unitless.
 Range or possible values: RESCODE_OK | RESCODE_FAIL
 Default value: RESCODE_FAIL

• string resString
 Purpose: to define the result string to indicate the success of sending the command to

 the TCS.
 Description: string variable defining the result string.
 Unit: unitless.
 Range or possible values: RESSTRING_OK | RESSTRING_FAIL
 Default value: RESSTRING_FAIL.

• double ttc
 Purpose: to define the expected time to complete the operation in the TCS.
 Description: double value representing the “time to complete” attribute.
 Unit: [TBD]
 Range or possible values: [TBD]
 Default value: -1.0 | [TBD]

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 31

Result public member functions

Result (CSQHandle *handle=NULL, int resCode=RESCODE_FAIL,
 string resString=RESSTRING_FAIL, double ttc=-1.0)

The class's parametized Constructor.

CSQHandle *GetcommandHandle ()
Getter method for the commandHandle property of this class.

int GetresultCode ()
Getter method for the resultCode property of this class.

string GetresultString ()
Getter method for the resultString property of this class.

double GettimeToComplete ()

Getter method for the ttc (time to complete) property of this class.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 32

The Status class

Defines the requested status information for the processing request (specified by
a handle), and (in case of completion of the command) the structure returned
by the processing request.

StatusInfo public member functions

string GetCommandResult();
Retrieves the (string) result of the CSQ command associated with the
StatusInfo instance, which is STATE_NORESULT, in case the command
handle is not assigned.

string GetCommandStatus();
Retrieves the status string of the CSQ command associated with the
StatusInfo instance, or a string indicating that there is no associated
command.

double GetEstimateTTC();
Retrieves the latest estimate for the time to completion of the CSQ
command associated with the StatusInfo instance, or -1.0 if there is
no estimate for the time to completion (most TCS commands do not
support this feature).

void Block();
Method responsible for blocking the command till its execution is
completed by the TCS.

StatusInfo definitions

STATE_RUNNING "RUNNING"
Definition of the string indicating that a command is still being executed by the CSQ.

STATE_CANCELED "CANCELED"
Definition of the string indicating that a CSQ command has been previously canceled.

STATE_SUCCESS "SUCCESS"
Definition of the string indicating that the CSQ has successfully finished processing the
associated command.

STATE_FAILURE "FAILED"
Definition of the string indicating that an error has occurred during execution of the associated
command by the CSQ.

STATE_WRONGHANDLE "NO ASSOCIATED COMMAND HANDLE"
Definition of the string indicating there is no associated command for the specified command
handle.

STATE_NORESULT "NO COMMAND RESULT"
Definition of the string indicating there is no valid result string that can be
returned as the command's result.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 33

 7.1 AOPreset

Description

The AOPreset command is issued in a AOS observation service status in
order to prepare the AO system for an observation in adaptive mode. More
details in reference [3], section 2.1.3

Syntax

Result * AOPreset(AOmodeType AOMODE,
wfsType WFS,
float SOCOORD1, float SOCOORD2,
float ROCOORD1, float ROCOORD2,
float ROTANGLE, float MAG,
float COLOR, float WANGLE,
const char * SIDE)

Attributes

• AOmodeType AOMODE(in)
 Purpose: to specify the AO mode, either TTM-AO, ACE-AO or ICE-AO
 Description: enumerated variable to represent the AO mode.
 Unit: unitless
 Range or possible values: FIX_AO | TTM_AO | ACE_AO | ICE_AO
 Default value: -

• wfsType WFS(in)
 Purpose: to specify the source of WFS data.
 Description: enumerated variable. TBD at the moment.
 Unit: unitless
 Range or possible values: TBD
 Default value: -

• float SOCOORD1, SOCOORD2 (in)
 Purpose: to specify the position of the scientific object in focal plane coordinates.
 Description: double value.
 Unit: mm
 Range or possible values: [TBD.00, TBD.00]
 Default value: -

• float ROCOORD1, ROCOORD2 (in)
 Purpose: to specify the position of the reference object in focal plane coordinates.
 Description: double value
 Unit: mm
 Range or possible values: [-TBD.00 , TBD.00]
 Default value: -

• float ROTANGLE (in)

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 34

 Purpose: to specify the angular position of the rotator.
 Description: double value
 Unit: radians
 Range or possible values: [-TBD.00 , TBD.00]
 Default value: -

• float MAG(in)
 Purpose: to specify the magnitude of the reference star.
 Description: double value
 Unit: unitless
 Range or possible values: [-TBD , TBD]
 Default value: -

• float WANGLE(in)
 Purpose: to specify the wind direction.
 Description: double value
 Unit: radians
 Range or possible values: [-TBD , TBD]
 Default value: -

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RRESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• The AOS must be in observation service status.

After execution

• AOS will wait for a change of the corresponding AO variable (TBD at
the moment) reflected also in the data dictionary.

• AOS perform all set up operation needed, except acquisition of the
reference object, which is performed with the subsequent
AOAcquireRef command.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 35

• We don't expect the TCS to send back any parameter. The evaluation
of the command’s result will let us know if the command was
successfully executed by the TCS.

Examples

...
aResult = anIIF->AOPreset(ACE_AO, 1.0, 1.2, 2.0, 1.67,

3.15, -3, 20, SIDE_LEFT);
...

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 36

 7.2 AOAcquireRef

Description

AOAcquireRef, issued after a AOPreset, requests the AOS to proceed into
the reference object acquisition, in order to find the reference star within
the field of view of the technical viewer.
More details in reference [3], section 2.1.4

Syntax

Result * AOAcquire(const char * SIDE)

Attributes

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• The AOS must be in observation service status.
• The instrument must check that the previous PresetAO command has

been successfully completed, the telescope has reached the pointing
position and the guiding system is operating.

After execution

• AOS will issue either a AOStart or a AORefine command.
• The command returns the computed AO loop parameters, that can be

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 37

retrieved via CommandReturn's getResultCount() and
GetResultDescription(int n) methods.
This parameters are TBD. More information in reference [3], section
2.1.4.

Examples

....
aResult = anIIF->AOAcquireRef(SIDE_RIGHT);
....

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 38

 7.3 AORefine

Description

The AORefine command is used to support the ICE-AO operating mode. It
maybe used to request the AOS to modify the value of some loop parameter
before closing the loop.
More details in reference [3], section 2.1.5

Syntax

Result * AORefine(int NMODES, float ITIME,
int NBINS, float TTMOD,
const char * F1SPEC,
const char * F2SPEC,
const char * SIDE)

Attributes

• int NMODES(in)
 Purpose: to specify the number of corrected modes.
 Description: integer variable
 Unit: unitless
 Range or possible values: TBD
 Default value: TBD

• float ITIME (in)
 Purpose: to specify the CCD integration time.
 Description: float value.
 Unit: s
 Range or possible values: [TBD, TBD]
 Default value: 0

• int NBINS(in)
 Purpose: to specify the CCD binning
 Description: integer value
 Unit:
 Range or possible values: [-TBD , TBD]
 Default value: 0

• float TTMOD (in)
 Purpose: to specify the Tip-Tilt internal mirror modulation.
 Description: float value
 Unit: TBD
 Range or possible values: [-TBD, TBD]
 Default value: 0.00

• const char * F1SPEC (in)
 Purpose: to specify the selected position of filter wheel number 1.
 Description: string value.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 39

 Unit: unitless
 Range or possible values: TBD
 Default value: TBD

• const char * F2SPEC (in)
 Purpose: to specify the selected position of filter wheel number 2.
 Description: string value.
 Unit: unitless
 Range or possible values: TBD
 Default value: TBD

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• The AOS must be in observation service status.
• AOPreset must be done, AOAcquireRef must be done.

After execution

• AOS will wait for a change of the corresponding AO variable,
reflected also in the data dictionary.

• AOS perform all set up operation needed, except acquisition of the
reference object, which is performed with the subsequent
AOAcquireRef command.

• The command returns the computed AO loop parameters, that can be
retrieved via CommandReturn's getResultCount() and
GetResultDescription(int n) methods.
This parameters are TBD. More information in reference [3], section
2.1.5.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 40

Examples

....
aResult = anIIF->AORefine(1, 1.123, 1, .20, TBD, TBD, SIDE_LEFT);
....

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 41

 7.4 AOStart

Description

This command is used to request the closing of the AO loop.
More details in reference [3], section 2.1.6

Syntax

Result * AOStart(const char * SIDE)

Attributes

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• The AOS must be in observation service status.
• The instrument must check that the previous AOPreset command has

been successfully completed, the telescope has reached the pointing
position and the guiding system is operating.

• AOS must be fully ready to close the loop.

After execution

• Loop closed.
• We don't expect the TCS to send back any parameter. The evaluation

of the command’s result will let us know if the command was

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 42

successfully executed by the AOS.

Examples

....
aResult = anIIF->AOStart(SIDE_LEFT);
....

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 43

 7.5 AOOffsetXY

Description

AOOffsetXY is issued in AOS observation service status in order to offset
the pointing of the AOS. This command is meaningful only in closed loop
mode. More details in reference [3], section 2.1.7

Syntax

Result * AOOffsetXY(float XOFF, float YOFF,
const char * SIDE)

Attributes

• float XOFF (in)
 Purpose: to specify the requested position offset in X.
 Description: float value.
 Unit: mm
 Range or possible values: [TBD, TBD]
 Default value: 0

• float YOFF (in)
 Purpose: to specify the requested position offset in Y.
 Description: float value
 Unit: TBD
 Range or possible values: [-TBD, TBD]
 Default value: 0.00

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 44

Preconditions

• The instrument must be authorized.
• The AOS must be in observation service status.
• AOS is operating in closed loop mode.

After execution

• Secondary mirror follows the offset, so this operation results in an
offset of the field on the scientific camera.

• We don't expect the TCS to send back any parameter. The evaluation
of the command’s result will let us know if the command was
successfully executed by the AOS.

Examples

....
aResult = anIIF->AOOffsetXY(1.255, -0.815, SIDE_BOTH);
....

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 45

 7.6 AOOffsetZ

Description

This command is issued in AOS observation service status in order to offset
the focus of the AOS. It is meaningful only in closed loop mode. More
details in reference [3], section 2.1.8

Syntax

Result * AOOffsetZ(float ZOFF, const char * SIDE)

Attributes

• float ZOFF (in)
 Purpose: to specify the requested focus offset.
 Description: float value.
 Unit: mm
 Range or possible values: [TBD, TBD]
 Default value: 0

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• The AOS must be in observation service status.
• AOS is operating in closed loop mode.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 46

After execution

• Secondary mirror follows the offset, so this operation results in a
change of focus on the scientific camera.

• We don't expect the TCS to send back any parameter. The evaluation
of the command’s result will let us know if the command was
successfully executed by the AOS.

Examples

....
aResult = anIIF->AOOffsetZ(1.955, SIDE_LEFT);
...

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 47

 7.7 AOCorrectModes

Description

This command is used in AOS observation service status to apply a modal
correction on the mirror shape. More details in reference [3], section 2.1.9

Syntax

Result * AOCorrectModes(float DELTAM[762],
const char * SIDE)

Attributes

• float DELTAM[762] (in)
 Purpose: to specify the modes correction vector.
 Description: float vector with 762 elements.
 Unit: TBD
 Range or possible values: [TBD, TBD]
 Default value: 0

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• The AOS must be in observation service status.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 48

After execution

• AOS sends the related request message to AO-Sup. The mirror
change the shape.

• We don't expect the TCS to send back any parameter. The evaluation
of the command’s result will let us know if the command was
successfully executed by the AOS.

Examples

....
float DeltaM[762];
....
aResult = anIIF->AOCorrectModes(DeltaM, SIDE_LEFT);
....

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 49

 7.8 AOStop

Description

This command is used to stop the current operation. After this command
any setting defined by a previous AOPreset is canceled. More details in
reference [3], section 2.1.10

Syntax

Result * AOStop(const char * MSG,
const char * SIDE)

Attributes

• const char * MSG (in)
 Purpose: to specify the reason for stopping.
 Description: string value to represent the message for stopping.
 Unit: unitless
 Range or possible values: -
 Default value: -

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• The AOS must be in observation service status.
• AOS is in closed loop mode.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 50

After execution

• AOS send the request message to AO-Sup, which properly updates
the related variable in the data dictionary.

• AOS is in open loop mode.
• We don't expect the TCS to send back any parameter. The evaluation

of the command’s result will let us know if the command was
successfully executed by the AOS.

Examples

....
aResult = anIIF->AOStop(“I'm tired”, SIDE_LEFT);
...

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 51

 7.9 AOPause

Description

This command is issued to temporarily suspend the current AO operation.
More details in reference [3], section 2.1.11

Syntax

Result * AOPause(const char * SIDE)

Attributes

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• The AOS must be in observation service status.
• AOS is in closed loop mode.

After execution

• AOS sends the request message to AO-Sup, which properly updates
the related status in the data dictionary.

• AOS is in pause mode.
• We don't expect the TCS to send back any parameter. The evaluation

of the command’s result will let us know if the command was
successfully executed by the AOS.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 52

Examples

....
aResult = anIIF->AOPause(SIDE_BOTH);
....

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 53

 7.10 AOResume

Description

This command resumes suspended operation after a AOPause.
More details in reference [3], section 2.1.12

Syntax

Result * AOResume(const char * SIDE)

Attributes

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• A previous AOPause must be issued.
• AOS is in pause mode.

After execution

• AOS will send the request message to AO-Sup. The it will properly
update the related variable in the data dictionary.

• The loop is closed.
• We don't expect the TCS to send back any parameter. The evaluation

of the command’s result will let us know if the command was
successfully executed by the AOS.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 54

Examples

....
aResult = anIIF->AOResume(SIDE_LEFT);
....

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 55

 7.11 AOUserPanic

Description

This command is issued whenever some TCS subsystem, including an
instrument, detects any dangerous condition, and decides to perform a
fast shutdown. More details in reference [3], section 2.1.14

Syntax

Result * AOUserPanic(const char * MSG
const char * SIDE)

Attributes

• const char * MSG (in)
 Purpose: to specify the reason for panic.
 Description: string value to represent the message for panic.
 Unit: unitless
 Range or possible values: -
 Default value: -

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 56

After execution

• AOS sends the corresponding request message to AO-Sup.
• The connection is immediately closed.
• AOS shutdown ASAP and puts the secondary mirror in a safe mode5 .
• We don't expect the TCS to send back any parameter. The evaluation

of the command’s result will let us know if the command was
successfully executed by the AOS.

Examples

....
aResult = anIIF->AOUserPanic(“Ahhhh What I did !!!!”, SIDE_LEFT);
....

5 After the acknowledge no other interaction will be possible between AOS and AO-Sup.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 57

 7.12 Authorize

Description

This command allows the instrument to authorize itself to control one or
both sides of the telescope. For multi-threaded ICS, TCS allows multiple
authorizations, maintaining an internal count for each side.
For further information, please see section 6.1.1, 6.1.2, and section 8.2 as
well.

Syntax

bool Authorize()

Return values

• bool (returned)
 Purpose: to evaluate if the instrument was authorized to control the specified side.

 See section 8.2 for further details.
 Description: bool value.
 Unit: unitless
 Range or possible values: true authorization was granted by the TCS for the

specified instrument and side on the IIF
instance.

false The authorization failed, most likely another
instrument already controls one or all of the
telescope sides specified in the failing IIF
instance's constructor.

Preconditions

• The instruments must create a new instance of the IIF class,
identifying themselves by two pieces of information, their unique
name (i.e. “MODS1” or “LUCIFER2”) and their focal station. (See
section 8.2 for further details).

After execution

• Instruments are ready to initiate command processing inside the TCS
via the IIF.

Examples

....
IIF * anIIF;

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 58

try
{

 anIIF = new IIF("prime left", "LBCBLUE"); //pretend to the left-side,
 //prime focus blue-channel LBC

}
catch (int e)
{
 cout << "The IIF failed to initialize";
 exit(-1);
}

 //Permission for commanding the respective telescope sides is requested, and
//-upon failure to achieve authorization- the program is exited
if (!anIIF->Authorize())

 {
 cout << "Authorize() was not successful ... terminating test program.";

 exit(-1);
}
cout << "Authorize() successful" << endl;

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 59

 7.13 CancelCommand

Description

CancelCommand is used to cancel an already issued command6.

Syntax

Result * CancelCommand(CSQHandle * HANDLE)

Attributes

• CSQHandle * HANDLE (in)
 Purpose: to specify the CSQHandle pointer of the IIF command to be canceled.
 Description: Unique CSQHandle object.
 Unit: unitless
 Range or possible values: -
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL indicating an error or

RESCODE_OK The command was accepted.

Preconditions

• The instruments must be previously authorized.
• An IIF command must have been issued and accepted by the CSQ.

After execution

• The execution of the command specified by the CSQHandle is
canceled.

Examples

...
aResult = anIIF->CancelCommand(aResStandby->GetcommandHandle());

6 At the moment, most commands do NOT support cancel in the TCS.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 60

 7.14 Deauthorize

Description

The Deauthorize command is issued to finish the observation. It un-does
one 'authorize' request. The TCS maintains a count of 'authorize' requests
for each side, and this command decrements the count. When the count
reaches zero the instrument is no longer authorized on that side.

Syntax

Result * Deauthorize(const char * SIDE)

Attributes

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL indicating an error

RESCODE_OK The command was accepted.

Preconditions

• None

After execution

• The CSQ count for the specified side is decremented. When the count
is zero, this side transits into a “idle” state and another instrument
can take control of it.

• The command returns a string “DEREGISTERED” in case that the count
is zero, Otherwise returns “AUTHORIZED”. The result can be retrieved
via StatusInfo's getCommandResult. Please find more details in

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 61

section 8.4, in particular table 8.3.

Examples

...
aResult = anIIF->Deauthorize(SIDE_RIGHT);
...

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 62

 7.15 GetCommandStatus

Description

GetCommandStatus is used to inquire the status of a previously issued IIF
command.

Syntax

StatusInfo * GetCommandStatus(CSQHandle * HANDLE)

Attributes

• CSQHandle* HANDLE (in)
 Purpose: to specify the processing request whose status is being inquired.
 Description: Unique CSQHandle object.
 Unit: unitless
 Range or possible values: -
 Default value: -

Return values

• StatusInfo * RESULT (returned)
 Purpose: to specify the requested status information for the processing request

 specified by HANDLE.
 Description: StatusInfo structure received from the TCS with the status of the

 command. See StatusInfo class above.
 Unit: unitless
 Range or possible values: See StatusInfo above.

Preconditions

• An IIF command must have been issued and accepted by the CSQ.

After execution

• The instrument receives a structure containing the requested status
information for the processing request specified by HANDLE, and (in
case of completion) the structure returned by the processing request;
By checking the returned STATUSINFO's command status (see
section 8.4 for further information), the Instrument can determine if
a command has finished processing inside the TCS.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 63

Examples

...
// Issue the Standby command
aResult = anIIF->Standby(3, SIDE_LEFT);

if (aResult->GetresultCode() != RESCODE_FAIL) {
aResult->GetcommandHandle()->block(); /* wait for TCS */

StatusInfo* statusInf =
anIIF->GetCommandStatus(aResult->GetcommandHandle());

...

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 64

 7.16 GetMultiParameter

Description

This command is used to read a block of entries from the data dictionary in
one shot.

Syntax

Result * GetMultiParameter(MultiDDEntry MULTIENTRIES)

Attributes

• MultiDDEntry MULTIENTRIES (in)
 Purpose: to define the list of parameters to be read by the command from the data

 dictionary.
 Description: MultiDDEntry structure to represent the list of data dictionary entries.

 See MultiDDEntry class above.
 Unit: unitless
 Range or possible values: Valid Data Dictionary entries.
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL indicating an error or

RESCODE_OK The command was accepted.

Preconditions

• A MultiDDEntry object must be populated with valid data dictionary
entries.

After execution

• The command returns a list with the values of the data dictionary
entries on the TCS side, that can be retrieved via CommandReturn's
getResultCount() and GetResultDescription(int n) methods.
More details in section 8.4

• If the command fails, just the failing entries are returned along with

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 65

the failure reason.

Examples

...
MultiDDEntry DDEntries;
DDEntries.PushEntry(“pmc.side[0].elevationAngle”);
DDEntries.PushEntry(“pmc.side[1].elevationAngle”);
aResult = anIIF->GetMultiParameter(DDEntries);
...

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 66

 7.17 GetParameter

Description

GetParameter requests telescope status by querying a valid data dictionary
entry.

Syntax

Result * GetParameter(const char * DDENTRY)

Attributes

• const char * DDENTRY (in)
 Purpose: to specify the data dictionary entry to be requested.
 Description: string value.
 Unit: unitless
 Range or possible values: Valid Data Dictionary entry.
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL indicating an error or

RESCODE_OK The command was accepted.

Preconditions

• The data dictionary entry must be a valid one.

After execution

• The command returns the value of the data dictionary entry on the
TCS side, that can be retrieved via CommandReturn's
getResultCount() and GetResultDescription(int n) methods.

• If the command fails, returns the failure reason.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 67

Examples
...
aResult = anIIF->GetParameter("pmc.side[0].elevationAngle");
...

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 68

 7.18 GetRotatorTrajectory

Description

This command inquires the rotator trajectory for the near future. This
function has been designed specifically for LBC use in that it
accommodates constraints in their instrument. It is not intended for use by
any other instrument.

Syntax

Result * GetRotatorTrajectory(double NOOFSECS,
double INTERVAL,
double STARTTIME,
const char * SIDE)

Attributes

• double NOOFSEC (in)
 Purpose: to specify the number of seconds for the desired 'look-ahead' for the

 trajectory.
 Description: double value.
 Unit: seconds
 Range or possible values: [TBD]
 Default value: -

• double INTERVAL (in)
 Purpose: to specify the number of seconds for the desired time interval between

 returned trajectory points.
 Description: double value.
 Unit: seconds
 Range or possible values: [TBD]
 Default value: -

• double STARTTIME(in)
 Purpose: to specify the desired start time for prediction as a Modified Julian Date.
 Description: double value.
 Unit: days
 Range or possible values: [TBD]
 Default value: -

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 69

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL indicating an error or

RESCODE_OK The command was accepted.

Preconditions

• The instrument must be authorized.
• The telescope is observing.

After execution

• The command returns an array of (t, theta) pairs, representing time
in days in days (JD, double - please note the time is intentionally
returned as JD) and rotation angle (radians, double) that can be
retrieved via CommandReturn's getResultCount() and
GetResultDescription(int n) methods. More details in section 8.4.

Examples

...
aResult = anIIF->GetRotatorTrajectory(50.0,1.0,0.0, SIDE_LEFT);
...

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 70

 7.19 LogEvent

Description

This command is issued to log a message inside the TCS's logging system.

Syntax

Result * LogEvent(const char * EVENTNAME,
const char * EVENTDESCRIPTION)

Attributes

• const char * EVENTNAME (in)
 Purpose: to specify an event name to be logged in the TCS's logging system.
 Description: string to define the event name.
 Unit: unitless
 Range or possible values: -
 Default value: -

• const char * EVENTDESCRIPTION (in)
 Purpose: to specify a descriptive text that the instrument desires to be logged.
 Description: string to define the event description.
 Unit: unitless
 Range or possible values: -
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The event must be previously defined in the data dictionary.

After execution

• The telescope processes the logging request. The event name is
recorded in the format “CSQ.<InstrumentID>.<EventName> and the
event description in the format “CSQ “ + <InstrumentID> + “ “ +

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 71

<EventDescription>.
• We don't expect the TCS to send back any parameter. The evaluation

of the command’s result (described in detail on section 8.4) will let us
know if the command was successfully executed by the TCS.

Examples

...
aResult = anIIF->LogEvent("My_First_log”, ”Hello World!");
...

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 72

 7.20 Move

Description

This command has the same functionality that MoveXY, TipTilt, StepFocus
and MoveFocus. See the respective section for further details.

Syntax

Result * Move (double X, double Y, double Z,
double RX, double RY, double RZ,
int D_FLAG, moveType MOVE_TYPE,
opeType OPE, double TIME,

 const char * SIDE)

Attributes

• double X,Y,Z (in)
 Purpose: to specify the naked focal plane movements. MOVE_TYPE will determine if

 they are absolute or relative values. For OPE M3, X and Y are ignored, and
 Z is M3 piston. More information about the coordinate system in Figure 6.3

 Description: double value.
 Unit: millimeters
 Range or possible values: Depends on OPE and current position.
 Default value: -

• double RX,RY,RZ (in)
 Purpose: to specify the the naked focal plane rotation. MOVE_TYPE will determine if

 they are absolute or relative values. For OPE M3, RX is M3 Tip, RY is M3
 Tilt.

 Description: double value .
 Unit: micro radians
 Range or possible values: Depends on OPE and current position.
 Default value: -

• int D_FLAG (in)
 Purpose: 6 bits with a bit for each of the preceding 6 variables. Bit 0 enables X, bit

 1 enables Y, Bit 2 enables Z, and so on.
 Description: integer to represent the mask or flag, needed for absolute movements.
 Unit: unitless
 Range or possible values: [00000000, 00111111] bin.
 Default value:

• moveType MOVE_TYPE (in)
 Purpose: to determine if the movements are absolutes or relatives.
 Description: value to represent the movement type, MV_REL or MV_ABS. See

 moveType definition in section 7.
 Unit: unitless
 Range or possible values: MV_REL | MV_ABS

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 73

 Default value: -
• opeType OPE (in)

 Purpose: to determine which optical element(s) to move.
 Description: value to represent the PSF mode, DEFAULT: TCS decides the OPE to

 move, M1 the primary, M2 the secondary and so on. See opeType
 definition above, page 17.

 Unit: unitless
 Range or possible values: DEFAULT | M1 | M2 | M3 |

M1M2 | M1M3 | M2M3 | M1M2M3
 Default value: DEFAULT

• int TIME (in)
 Purpose: to specify the lookahead time in seconds for the collimation correction.
 Description: integer value.
 Unit: seconds
 Range or possible values: TBD
 Default value: -

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• The OPE can be moved.

After execution

• OPE is on a new position.
• We don't expect the TCS to send back any parameter. The evaluation

of the command’s result (described in detail on section 8.4) will let us
know if the command was successfully executed by the TCS.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 74

Examples

...
aResult = anIIF->Move(1.42, 1.03, 1.0, 1.0,0.4, 0.4, 255,

MV_REL, M1, 0, SIDE_LEFT);
...

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 75

 7.21 MoveFocus

Description

MoveFocus moves an optical element to a new absolute position z to adjust
or to define a new focus position (more information about the coordinate
system in figure 6.3). Any focus move in closed-loop mode must be
accompanied by the corresponding offset of the w/W stage along the focus
direction.

Syntax

Result * MoveFocus(double ABSPOS, opeType OPE,
const char * SIDE)

Attributes

• double ABSPOS (in)
 Purpose: to specify the new absolute position Z of the respective optical element.
 Description: double value. For OPE M3 this is M3 piston.
 Unit: millimeter
 Range or possible values: Depends on OPE.
 Default value: -

• opeType OPE (in)
 Purpose: to specify the optical element which should move in Z direction. The OPE

 could be the primary, the secondary or the tertiary mirror.
 Description: enumerated variable to define the optical element (OPE). See

 description above.
 Unit: unitless
 Range or possible values: M1 | M2 | M3 | M1M2
 Default value: -

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 76

 Range or possible values: Result code = RESCODE_FAIL: an error occurred.
RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• The telescope must be observing.
• The OPE can be moved.
• The telescope is tracking and/or guiding and/or controlling AO.

After execution

• OPE is on a new position.
• Telescope is observing.
• We don't expect the TCS to send back any parameter. The evaluation

of the command’s result (described in detail on section 8.4) will let us
know if the command was successfully executed by the TCS.

Examples

...
aResult = anIIF->MoveFocus(1.42, M1, SIDE_LEFT);
...

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 77

 7.22 MoveXY

Description

The MoveXY command moves an OPE in X or Y direction, relative to the
current position (more information about the coordinate system in figure
6.3). In closed-loop mode with w/W, this may require offsetting the relevant
stage/s as well to maintain lock on the specified reference star.

Syntax

Result * MoveXY(double XMOTION, double YMOTION,
 opeType OPE, const char * SIDE)

Attributes

• double XMOTION (in)
 Purpose: to specify the motion along the x axis, relative to the current position with

 a precision of micro meters.
 Description: double value to represent the motion along x axis.
 Unit: millimeter
 Range or possible values: Depends on OPE.
 Default value: 0

• double YMOTION (in)
 Purpose: to specify the motion along the y axis, relative to the current position with

 a precision of micro meters.
 Description: double value to represent the motion along y axis.
 Unit: millimeter
 Range or possible values: Depends on OPE.
 Default value: 0

• opeType OPE (in)
 Purpose:to define the optical element this command applies to. The OPE could be

 the primary or the secondary mirror.
 Description: enumerated variable to define the optical element (OPE). See

 description above.
 Unit: unitless
 Range or possible values: M1 | M2
 Default value: M1

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 78

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• The telescope must be observing.
• The OPE can be moved.
• The telescope is tracking and/or guiding and/or controlling AO.

After execution

• OPE is on a new position.
• Telescope is observing.
• We don't expect the TCS to send back any parameter. The evaluation

of the command’s result (described in detail on section 8.4) will let us
know if the command was successfully executed by the TCS.

Examples

....
aResult = anIIF->MoveXY(1.000, -0.810 , M1, SIDE_LEFT);
...

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 79

 7.23 MoveXYZ

Description

The MoveXYZ command moves the primary and secondary together in X, Y
and Z direction. The movement is relative and not synchronized between
the OPE. (More information about the coordinate system in figure 6.3)

Syntax

Result * MoveXYZ(double RELX, double RELY, double RELZ,
 const char * SIDE)

Attributes

• double RELX (in)
 Purpose: to specify the relative movement in X direction.
 Description: double value.
 Unit: millimeters
 Range or possible values: Depends on OPE and current position.
 Default value: 0

• double RELY (in)
 Purpose: to specify the relative movement in Y direction.
 Description: double value.
 Unit: millimeters
 Range or possible values: Depends on OPE and current position.
 Default value: 0

• double RELZ (in)
 Purpose: to specify the relative movement in Z direction.
 Description: double value.
 Unit: millimeters
 Range or possible values: Depends on OPE and current position.
 Default value: 0

• const char * SIDE (in)
 Purpose: to define the side this command applies to.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 80

 query for further information.
 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• The telescope must be observing.
• The OPE can be moved.
• The telescope is tracking and/or guiding and/or controlling AO.

After execution

• OPE is on a new position.
• Telescope is observing.
• We don't expect the TCS to send back any parameter. The evaluation

of the command’s result (described in detail on section 8.4) will let us
know if the command was successfully executed by the TCS.

Examples

....
aResult = anIIF->MoveXYZ(1.000, -0.810 , 1.22, M1, SIDE_LEFT);
...

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 81

 7.24 OffsetGuiding

Description

OffsetGuiding moves the telescope a small distance without changing the
value of the pointing coordinates. Note that this command does not result
in the movement of the w/W stage. At the moment, this command is only
needed by LBC.

Syntax

Result * OffsetGuiding(double ROTANGLE, Offset * OFFSET,
const char * SIDE)

Attributes

• double ROTANGLE (in)
 Purpose: to specify the value in radians of the optional relative rotation angle.
 Description: double value.
 Unit: radian
 Range or possible values: [-2PI, 2PI]
 Default value: 0

• Offset * OFFSET (in)
 Purpose: to specify the desired guiding offset from the current position to the

 science object.
 Description: Offset object to define the guiding offset.
 Unit: see Offset class above.
 Range or possible values: see Offset class in section 7.
 Default value: -

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 82

Preconditions

• The instrument must be authorized.
• The telescope must be observing.
• The telescope can be moved.
• The telescope is tracking and/or guiding and/or controlling AO.

After execution

• The telescope is on a new position, tracking, guiding and controlling
the AOS.

• We don't expect the TCS to send back any parameter. The evaluation
of the command’s result (described in detail on section 8.4) will let us
know if the command was successfully executed by the TCS.

Examples

...
offset = new Offset(2.354, 1.1224, COORD_FOCAL_PIX);
//call OffsetGuiding()
aResult = anIIF->OffsetGuiding(-1.1, offset, SIDE_LEFT);

...

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 83

 7.25 OffsetPointing

Description

OffsetPointing moves the telescope a small distance, setting the value of
the telescope pointing coordinates to the new position. This command uses
the existing target information and the setup declared in the last
PresetTelescope command provided for the given telescope side.

Syntax

Result * OffsetPointing(double ROTANGLE,
 Offset * OFFSET,
 moveType MOVE_TYPE,
 opeType OPE,
 bool NEW_POSITION,
 const char * SIDE)

Attributes

• double ROTANGLE (in)
 Purpose: to specify the value in radians of the rotation angle.
 Description: double value.
 Unit: radian
 Range or possible values: [-2PI, 2PI]
 Default value: -

• Offset * OFFSET (in)
 Purpose: to specify the desired offset from the position specified by the MOVE_TYPE

 parameter.
 Description: Offset object.
 Unit: see Offset class in section 7.
 Range or possible values: see Offset class above.
 Default value: -

• moveType MOVE_TYPE (in)
 Purpose: to determine if the movements are absolutes or relatives.
 Description: value to represent the movement type, MV_REL or MV_ABS. See

 moveType definition in section 7.
 Unit: unitless
 Range or possible values: MV_REL | MV_ABS
 Default value: MV_REL

• opeType OPE (in)
 Purpose: to define the element this command applies to.
 Description: enumerated variable to define the OPE, MOUNT, M1, M2, M3, HEXAPOD or

DEFAULT (see description in section 7). For this command the DEFAULT
option refers to the pointing kernel. The DEFAULT selection allows the

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 84

pointing kernel to choose the action which should be taken based upon
its internal logic.

 Unit: unitless
 Range or possible values: MOUNT | M1 | M2 | M3 | HEXAPOD | DEFAULT
 Default value: DEFAULT

• bool NEW_POSITION (in)
 Purpose: to determine if the target position should be changed or not.
 Description: bool variable. true = move the guide stage but does not change target

 RA and DEC. false = Update RA and DEC (dither).
 Unit: unitless
 Range or possible values: true | false
 Default value: false

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• The telescope must be observing.
• The telescope can be moved.
• The telescope is tracking and/or guiding and/or controlling AO.

After execution

• The telescope is on a new position, tracking, guiding and controlling
the AOS.

• The pointing coordinates in the data dictionary do not change.
• New pointing coordinates.
• We don't expect the TCS to send back any parameter. The evaluation

of the command’s result (described in detail on section 8.4) will let us
know if the command was successfully executed by the TCS.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 85

Examples

...
offset = {1.15, 1.35, COORD_RADEC_FOCAL}

//call OffsetPointing()
aResult = anIIF->OffsetPointing(28.4567891e-2, offset, MV_REL, M1,

false, SIDE_LEFT);
...

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 86

 7.26 PauseGuiding

Description

This command is issued to temporarily suspend the current guiding
operation.

Syntax

Result * PauseGuiding()

Attributes

• None

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• The telescope is observing.
• The telescope must be guiding.

After execution

• Guiding system is in pause mode.
• We don't expect the TCS to send back any parameter. The evaluation

of the command’s result will let us know if the command was
successfully executed by the AOS.

Examples

....
aResult = anIIF->PauseGuiding();
....

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 87

 7.27 PresetGuiding

Description

This command is issued to start the guiding.

Syntax

Result * PresetGuiding (Position ** guideStars,
 const char * SIDE)

Attributes

• Position ** guideStars (in)
 Purpose: to specify the list of guide stars. Note that the guide stars in the list will be

tried in the order as they were provided. The first one that is usable will be
the one the GCS will use for the guiding and possible WF sensing.

 Description: Position structure to define the guide star list.
 Unit: unitless
 Range or possible values: -
 Default value: -

• const char * SIDE (in)
 Purpose: to define the side this command applies to.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• The telescope must be observing and tracking.
• The guide unit must be ready to be closed.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 88

After execution

• The first suitable guide star from the list will have been acquired.
• The telescope is observing and guiding.
• We don't expect the TCS to send back any parameter. The evaluation

of the command’s result (described in detail on section 8.4) will let us
know if the command was successfully executed by the TCS.

Examples

....
Position *star1 = new Position(2.354, .1234, COORD_RADEC_SKY, J2000,

2000.0,NULL, &magnitude, 3421);

Position *star2 = new Position(3.5, .6, COORD_ALTAZ, J2000,
&propm, &magnitude, 0);

Position *star3 = new Position(1.5, 1.6, COORD_RADEC_SKY, J2000,2007.0,
&propm, &magnitude1, 2020);

guidestars = (Position **) malloc(4 * sizeof(Position *));
guidestars[0] = star1;
guidestars[1] = star2;
guidestars[2] = star3;
guidestars[3] = (Position *) NULL;

aResult = anIIF->PresetGuding(guidestars, SIDE_LEFT);
....

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 89

 7.28 PresetTelescope

Description

Slew the telescope into position in order to begin an observation cycle.

Figure 7.2: Positions in the focal plane for PresetTelescope.

Syntax

Result * PresetTelescope(double ROTANGLE,
rotatorType ROTATORMODE,

 Position* TARGET,
[Position** GUIDESTARS],
modeType MODE,
const char* SIDE,

 [Offset* OFFSET][,Hotspot* HOTSPOT],
[bool WRAPFLAG])

Attributes

• double ROTANGLE (in)
 Purpose: to specify the value in radians for the initial rotator angle.
 Description: double value to represent the IRA.
 Unit: radian
 Range or possible values: [-2PI, 2PI]
 Default value: 0

• rotatorType ROTATORMODE (in)
 Purpose: to specify the rotator mode of the instrument.
 Description: enumerated value that represents the rotator mode. See description

 in section 7.
 Unit: -

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 90

 Range or possible values: ROTATOR_PAR | ROTATOR_PSTN | ROTATOR_NATIVE |
ROTATOR_GRAV | ROTATOR_IDLE

 Default value: -
• Position * TARGET (in)

 Purpose: To specify all characteristics of the target and its location according to the
 coordinate system chosen.

 Description: Position object to define the target.
 Unit: See Position class in section 7.
 Range or possible values: See Position class in section 7.
 Default value: -

• Position ** GUIDESTARS (in, optional)
 Purpose: To specify all characteristics of the guide stars and their locations

 according to the coordinate system chosen.
 Description: list of positions to define the set of guide stars.
 Unit: See Position class above.
 Range or possible values: See Position class in section 7.
 Default value: NULL

• modeType MODE (in)
 Purpose: to specify the operating mode of the telescope.
 Description: value representing the telescope mode operation. See description in

section 7.
 Unit: unitless
 Range or possible values:MODE_STATIC | MODE_TRACK | MODE_GUIDE |

MODE_ACTIVE | MODE_ADAPTIVE| MODE_INTERFEROMETRIC
 Default value: -

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

• Offset * OFFSET (in, optional)
 Purpose: to specify the offset for the target in RA and DEC, ALT and AZ, or SFP

 coordinates.
 Description: Offset object to define the pointing offset.
 Unit: see Offset class in section 7.
 Range or possible values: see Offset class 7.
 Default value: NULL

• Hotspot * HOTSPOT (in, optional)
 Purpose: to specify the reference position in the focal plane, by default, the center of

 the focal plane. See figure 7.1 and 7.2 as well.
 Description: Hotspot object.
 Unit: see Hotspot class in section 7.
 Range or possible values: see Hotspot class in section 7.
 Default value: NULL

• bool WRAPERFLAG (in, optional)
 Purpose: This is a "maximize-time-on-target" flag.
 Description: bool variable where true means to choose the path that selects the

cable wrap that will provide the longest possible observing time on the

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 91

object. false means to move from the present position to a new object
by the shortest path possible.

 Unit: unitless
 Range or possible values: true | false
 Default value: false

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• The telescope must be ready to move, to track and control the active

optics / adaptive optic system (AOS).

After execution

• The telescope is on a new position and tracking.
• We don't expect the TCS to send back any parameter. The evaluation

of the command’s result (described in detail on section 8.4) will let us
know if the command was successfully executed by the TCS.

Examples

....
MagnitudeType magnitude = {-27.0, V, 1.0, U_B};

ProperMotionType propm = {0.123, 0.234};

Offset *offset = new Offset(2.354, .1234, COORD_RADEC_FOCAL);

Hotspot *hotspot = new Hotspot(3.5, .6);

Position *target = new Position(3.5, .6, COORD_RADEC_SKY, J2000,
2007.00, &propm, &magnitude1, 2020);

Position GuideStar = new Position(2.354, .1234, COORD_RADEC_SKY, J2000,
2007.00, NULL, &magnitude, 3421);

guidestars = (Position **) malloc(3 * sizeof(Position *));

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 92

guidestars[0] = target;
guidestars[1] = GuideStar;
guidestars[2] = (Position *) NULL;

aResult = anIIF->PresetTelescope(1.0, ROTATOR_PSTN, target, guidestars,
MODE_ACTIVE, SIDE_LEFT, false);

....

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 93

 7.29 ResumeGuiding

Description

This command resumes suspended operation after a PauseGuiding. See
section 7.26

Syntax

Result * ResumeGuiding()

Attributes

• None

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• A previous PauseGuiding must be issued.
• Guiding system is in pause mode.

After execution

• Guiding system is running.
• We don't expect the TCS to send back any parameter. The evaluation

of the command’s result will let us know if the command was
successfully executed by the AOS.

Examples

....
aResult = anIIF->ResumeGuiding();
....

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 94

 7.30 RotateCommon

Description

The RotateCommon command rotates the primary and the secondary mirror
around a common point. The movement is relative and not synchronized.
Initial positions for the mirror are depending on the focal station and must
be defined in the collimation model.

Syntax

Result * RotateCommon (double X,
double Y,
double Z,
double ANGLE,
double DIRECTION,
const char * SIDE)

Attributes

• double X, Y, Z (in)
 Purpose: to specify the rotation point position in XYZ.
 Description: double values representing the position of the point the mirrors rotate

 around. The coordinate zero is TBD.
 Unit: millimeters
 Range or possible values: TBD
 Default value: -

• double ANGLE (in)
 Purpose: to specify the rotation angle.
 Description: double value representing the angle to be rotated.
 Unit: radians
 Range or possible values: [-9999.999, 9999.999]
 Default value: -

• double DIRECTION (in)
 Purpose: to specify the direction of the rotation.
 Description: double value to represent the direction (between 0 and 2pi).
 Unit: radians
 Range or possible values: [0.0 , 2PI]
 Default value: -

• const char * SIDE (in)
 Purpose: to define the side this command applies to.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 95

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• The telescope is observing.
• The OPE can be moved.
• Optional: Telescope is tracking, guiding, controlling active optics or

in adaptive mode.

After execution

• The optical elements are in a new position.
• The telescope is observing.
• We don't expect the TCS to send back any parameter. The evaluation

of the command’s result will let us know if the command was
successfully executed by the TCS.

Examples

....
aResult = anIIF->RotateCommon(1.35, 1.00, 2.00, 10, 3.15, SIDE_LEFT);

....

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 96

 7.31 RotatePrimary

Description

The RotatePrimary command rotates the primary mirror around a fixed
reference point on the optical axis.

Figure 7.2: Primary mirror rotation diagram.

Syntax

Result * RotatePrimary(double DISTANCE, double ANGLE,
 double DIRECTION, const char * SIDE)

Attributes

• double DISTANCE (in)
 Purpose: to specify the rotation reference point's distance above the mirror in Z

 direction. (See figure 6.3 for more details)
 Description: double value
 Unit: millimeter
 Range or possible values: [999.999 , 99999.999]
 Default value: -

• double ANGLE (in)
 Purpose: to specify the value of the rotation angle with a precision of micro radians.
 Description: double value representing the angle.
 Unit: radians
 Range or possible values: [-0.000 , 999.999]
 Default value: -

• double DIRECTION (in)
 Purpose: to specify the direction of the rotation. Note that it is zero along the X axis

 and moves counterclockwise.
 Description: double value to represent the direction (between 0 and 2pi).
 Unit: radians
 Range or possible values: [0.0, 2PI]
 Default value: -

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 97

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• The telescope must be observing.
• The primary mirror can be moved.

After execution

• Primary mirror is on a new position.
• Telescope is observing.
• We don't expect the TCS to send back any parameter. The evaluation

of the command’s result will let us know if the command was
successfully executed by the TCS.

Examples

....
aResult = anIIF->RotatePrimary(1200.567, 110.499, 3.141592654, SIDE_LEFT);
...

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 98

 7.32 RotateZ

Description

Using this command, the tertiary mirror is rotated to adjust the incoming
beam angle for the instrument.

Syntax

Result * RotateZ (double ANGLE,
moveType MOVE_TYPE,
const char * SIDE)

Attributes

• double ANGLE (in)
 Purpose: to specify the relative value of the angle to be rotated.
 Description: double value. The sign is such that a positive rotation will move the

 light beam toward the front of the telescope, regardless of side.
 Unit: micro radians
 Range or possible values: TBD
 Default value: -

• moveType MOVE_TYPE (in)
 Purpose: to determine if the movements are absolutes or relatives.
 Description: value to represent the movement type, MV_REL or MV_ABS. A relative

rotation is incremental, that is, it adds to the current position. The
absolute rotation is with respect to the focal station position
maintained by the OSS. So an absolute rotation of zero will go back to
the default focal station position.

 Unit: unitless
 Range or possible values: MV_REL | MV_ABS
 Default value: -

• const char * SIDE (in)
 Purpose: to define the side this command applies to.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page 99

 Range or possible values: Result code = RESCODE_FAIL: an error occurred.
RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• The OPE can be moved.

After execution

• Tertiary mirror (M3) is on a new position.
• We don't expect the TCS to send back any parameter. The evaluation

of the command’s result will let us know if the command was
successfully executed by the TCS.

Examples

....
aResult = anIIF->RotateZ(1.35, MV_REL, SIDE_LEFT);

....

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
100

 7.33 RotAdjustPosition (Prototype)

Description

This command allows the instrument to specify (typically) fine adjustments
to the current rotator angle (in order to position an image on a detector or
a focal plane mask, for instance), although large angles can be specified
also. This command would normally be issued while the rotator is tracking.
In that case it makes an offset adjustment to the polynomials being
generated by PCS. If this command is issued when the rotator is
HOLDING, it will move the rotator by the specified amount and then
resume holding at that new position. More information in reference [4],
section 7.1.

Syntax

Result * RotAdjustPosition (double DELTA_ROTANGLE,
rotatorType ROTATORMODE,
const char * SIDE)

Attributes

• double DELTA_ROTANGLE (in)
 Purpose: This signed angle increment is added as a cumulative offset to the current

 rotator angle. The angle is interpreted in the reference frame that is
 specified by the ‘ROTATORMODE’ parameter.

 Description: double value.
 Unit: Radians
 Range or possible values: [-Pi/2 , Pi/2]
 Default value: -

• rotatorType ROTATORMODE (in)
 Purpose: This argument indicates in what coordinate system the angle should be

 interpreted. See section 7 for a full description of these options.
 Description: enumerated value that represents the rotator mode.
 Unit: -
 Range or possible values: ROTATOR_PAR | ROTATOR_PSTN |

ROTATOR_NATIVE |ROTATOR_GRAV | ROTATOR_IDLE
 Default value: -

• const char * SIDE (in)
 Purpose: to define the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
101

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• Rotator should be on and enabled and either tracking or holding.

After execution

• The rotator position will be permanently shifted by the specified
amount.

• We don't expect the TCS to send back any parameter. The evaluation
of the command’s result will let us know if the command was
successfully executed by the TCS.

Examples

....
aResult = anIIF->RotAdjustPosition(1.0252, ROTATOR_PAR, SIDE_RIGHT);
....

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
102

 7.34 RotHold (Prototype)

Description

If the rotator is tracking or slewing, this command makes it stop moving
and hold position at the point it was at when it received the hold command.
If the rotator is already holding position, this command has no effect. See
reference [4] for further details.

Syntax

Result * RotHold (const char * SIDE)

Attributes

• const char * SIDE (in)
 Purpose: to define the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The rotator must be on and in the “ready” state.

After execution

• The rotator will be held motionless at the position it had when the
command was issued.

• We don't expect the TCS to send back any parameter. The evaluation
of the command’s result will let us know if the command was
successfully executed by the TCS.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
103

Examples

....
aResult = anIIF->RotHold(SIDE_LEFT);
....

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
104

 7.35 RotMaximizeTime (Prototype)

Description

This command is to provide some control over the use of the rotator’s cable
wrap. When this command is executed, if the rotator and AZ axis are
already in that part of their cable wraps that maximizes the time left to
observe this object, this command does nothing. If they are not in the wrap
which maximizes observing time on the object, one or both will do a “slew-
to-track” to acquire the same object in the other end of their cable wrap.
So, this command will either do nothing or it will slew the rotator and/or
AZ axis 360 degrees.

Syntax

Result * RotMaximizeTime (const char * SIDE)

Attributes

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string defining the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• The rotator should be tracking an object.

After execution

• The rotator will be positioned tracking the object with the rotator in

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
105

that part of the cable wrap which maximizes the amount of time
available to observe an object.

• The rotator and AZ axis will continue tracking the object that was
previously being tracked.

• We don't expect the TCS to send back any parameter. The evaluation
of the command’s result will let us know if the command was
successfully executed by the TCS.

Examples

....
aResult = anIIF->RotMaximizeTime(SIDE_LEFT);
....

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
106

 7.36 RotServicePosition (Prototype)

Description

Makes the rotator move to the specified angle in the specified coordinate
frame and hold at that position.

Syntax

Result * RotServicePosition (double ANGLE,
 rotatorType ROTATORMODE,

const char * SIDE)

Attributes

• double ANGLE (in)
 Purpose: to specify the angle to which the rotator should be moved. It is taken to be

 expressed in the reference frame described by TRACKMODE
 Description: double value to represent the angle.
 Unit: radians
 Range or possible values: [-Pi/2, 5Pi/2] in the native coordinate frame

 [-3Pi/2, 3Pi/2] in the parallactic ref. frame
 [-3Pi/2, 3Pi/2] in gravitational ref. Frame
 Maximum range in the “position angle” reference

frame is a function of where the telescope is
pointing.

 Default value: 0
• rotatorType ROTATORMODE (in)

 Purpose: to specify the rotator mode of the instrument.
 Description: enumerated value that represents the rotator mode. See section 7 for

 a full description of these options.
 Unit: -
 Range or possible values: ROTATOR_PAR | ROTATOR_PSTN | ROTATOR_GRAV

ROTATOR_NATIVE | ROTATOR_IDLE
 Default value: -

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string defining the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
107

 Description: Result structure received from the TCS with the result code, a text
 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The rotator must be on and in the “ready” state.

After execution

• The rotator will be at the specified position and holding position,
ready to start tracking or to slew to another position.

• We don't expect the TCS to send back any parameter. The evaluation
of the command’s result will let us know if the command was
successfully executed by the TCS.

Examples

....
aResult = anIIF->RotServicePosition(0.1415, TRACK_GRAV, SIDE_LEFT);
....

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
108

 7.37 RotSetRotator (Prototype)

Description

This command is issued to enable or disable a rotator. “Enable” means to
turn the rotator on and make it ready to respond to commands. This
command is specifically designed to be used by an instrument that is not
the “authorized” instrument. However, an authorized instrument can
invoke this command as necessary.

Syntax

Result * RotSetRotator (bool ENABLE ,
 const char * SIDE)

Attributes

• bool ENABLE (in)
 Purpose: to determine whether to activate or deactivate the rotator associated with

 the specified focal station.
 Description: bool variable.
 Unit: unitless
 Range or possible values: true | false
 Default value: -

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• None

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
109

After execution

• The rotator will turn on and become ready to respond within 10 or 20
seconds. It will be holding its present position and ready to slew or
track.

• We don't expect the TCS to send back any parameter. The evaluation
of the command’s result will let us know if the command was
successfully executed by the TCS.

Examples

....
aResult = anIIF->RotSetRotator(true, SIDE_LEFT);

....

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
110

 7.38 RotTrack (Prototype)

Description

Makes rotator begin tracking according to the polynomial stream it is
currently receiving from the PCS. It will in general, need to do a slew to
the target position and then start tracking. See reference [4], section 7.1
for further details.

Syntax

Result * RotTrack (const char * SIDE)

Attributes

• const char * SIDE (in)
 Purpose: to define the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The system is ready to track, so the rotator is in "Holding" mode.
• The command can also be issued with the rotator in “Tracking”

mode, in which case this command would have no effect.

After execution

• The rotator will be tracking as described by the polynomials being
generated by the PCS.

• We don't expect the TCS to send back any parameter. The evaluation
of the command’s result will let us know if the command was

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
111

successfully executed by the TCS.

Examples

....
aResult = anIIF->RotTrack(SIDE_LEFT);
....

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
112

 7.39 RotNextPosition (Prototype)

Description

The PCS maintains in reflective memory a set of variables which describe
the time-to-limit for this “next position”. These variables include the time
remaining for an object at the specified R.A. and Dec. position to reach the
specified elevation limit with EL decreasing and the time to reach it with
EL increasing. This RA and Dec may or may not be the position of an
object that will ever be observed. This command has no affect on telescope
or rotator motion. Also maintained in reflective memory is the time
remaining for this object until the AZ wrap will hit a limit and the time
remaining until each rotator wrap will hit a limit. This set of time-to-limit
variables is separate from the set which relate to the position which the
PCS is presently tracking. This set is for an observer/instrument to use to
“ask” how long a particular object could be observed if observation of it
was to begin now. More information in reference [4], section 7.1.

Syntax

Result * RotNextPosition(double RA,
double DEC,
double LIMIT,
const char * SIDE)

Attributes

• double RA (in)
 Purpose: Specifies the R.A. of the object of interest.
 Description: double value.
 Unit: radians
 Range or possible values: [0.0 , 2Pi]
 Default value: -

• double DEC (in)
 Purpose: Specifies the declination of the object of interest.
 Description: double value.
 Unit: radians
 Range or possible values: [-Pi/2 , Pi/2]
 Default value: -

• double LIMIT (in)
 Purpose: Specifies the EL limit value that is of interest.
 Description: double value.
 Unit: radians
 Range or possible values: [0.0 , Pi/2]
 Default value: -

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
113

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value:

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• None

After execution

• The “time-to-limit” values for the “next position” in reflective memory
will be computed using these parameters. It also returns the current
AZ and EL for the specified object.

Examples

....
aResult = anIIF->RotNextPosition(2.245, 1.231, 2.000, SIDE_LEFT);
....

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
114

 7.40 SendWavefront

Description

SendWavefront sends an array of Zernike coefficients (see reference [11])
to be compensated by the actuators of the primary or secondary mirror.
Reducing atmospheric and optical aberrations, this command should
improve the image quality.

Syntax

Result * SendWavefront(Wavefront * POLYNOM,
opeType OPE,
const char * SIDE)

Attributes

• Wavefront * POLYNOM (in)
 Purpose: to define the 28 Zernike polynomial coefficients with a precision of 0.01 nm

 for wavefront correction.
 Description: Wavefront object to define the Zernike coefficients. See Wavefront

 class in section 7.
 Unit: nanometers
 Range or possible values: [-99999.99 , 99999.99]
 Default value: 0 (all coefficients of the WF instance are pre-populated with 0.0)

• opeType OPE (in)
 Purpose:to define the optical element this command applies to. The OPE could be

 the primary or the secondary mirror.
 Description: enumerated variable to define the optical element (OPE). See

 description in section 7.
 Unit: unitless
 Range or possible values: M1 | M2
 Default value: M1 (For Gregorian instrument M2).

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
115

 query for further information.
 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• The telescope must be observing.
• The telescope can be moved.
• The telescope is tracking and/or guiding.

After execution

• Mirror in new shape, means better image quality.
• Telescope observing.
• We don't expect the TCS to send back any parameter. The evaluation

of the command’s result will let us know if the command was
successfully executed by the TCS.

Examples

...
WaveFront *wfs = new WaveFront(); //Dummy instance. All coefficients 0.0
wfs->setCoefficient(812.0 , 1); /* set one coefficient (#1) non-zero */
wfs->setCoefficient(999.4 , 2); /* set one coefficient (#2) non-zero */
wfs->setCoefficient(1120.0 , 3); /* set one coefficient (#3) non-zero */
wfs->setCoefficient(1102.8 , 4); /* set one coefficient (#4) non-zero */

// Call SendWavefront()
aResult = anIIF->SendWavefront(wfs, M1, SIDE_LEFT);

...

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
116

 7.41 SetMultiParameter

Description

SetMultiParameter sets the values of the specified data dictionary entries
on the TCS in one shot. Note, that the instrument only has permission to
modify its own predefined entries.

Syntax

Result * SetMultiParameter(MultiDDEntry MULTIENTRIES)

Attributes

• MultiDDEntry MULTIENTRIES (in)
 Purpose: to define the structure specifying the list of parameters and values to set in

 the data dictionary.
 Description: MultiDDEntry structure to represent the list of data dictionary entries

 and their respective values.
 Unit: unitless
 Range or possible values: Valid Data Dictionary entries / values.
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The MultiDDEntry object is populated with string pairs: the first
string is the local data dictionary name, and the second is the value.
The CSQ subsystem will generate the fully qualified data dictionary
name as "csq.<InstrumentID>.entry_name". An instrument is not
allowed to set variables it does not own.

After execution

• New values for the specified data dictionary entries.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
117

• We don't expect the TCS to send back any parameter. The evaluation
of the command’s result will let us know if the command was
successfully executed by the TCS.

Examples

...
MultiDDEntry DDEntries;
DDEntries.PushEntry(“side[0].cooler” , “ON”);
DDEntries.PushEntry(“side[1].cooler” , “OFF”);
aResult = anIIF->SetMultiParameter(DDEntries);
...

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
118

 7.42 SetParameter

Description

Allows the instruments to set a new value of a predefined data dictionary
entry on the TCS.

Syntax

Result * SetParameter(const char * DDENTRY,
const char * DDENTRYVALUE)

Attributes

• const char * DDENTRY (in)
 Purpose: to specify the name of the data dictionary entry to set with a new value.
 Description: string to define the data dictionary entry.
 Unit: unitless
 Range or possible values: valid data dictionary entry.
 Default value: -

• const char * DDENTRYVALUE (in)
 Purpose: to specify the new value of the data dictionary entry.
 Description: string variable to define the new value of the data dictionary entry.
 Unit: unitless
 Range or possible values: Valid Value.
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The data dictionary entry must be predefined in the TCS (the fully
qualified data dictionary name will be generated by the CSQ as
"csq.<InstrumentID>.<DDENTRY>").

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
119

After execution

• The command sets the new value of the data dictionary entry on the
TCS side.

• We don't expect the TCS to send back any parameter. The evaluation
of the command’s result will let us know if the command was
successfully executed by the TCS.

Examples

...
aResult = anIIF->SetParameter("side[0].coolers",“OFF”);
...

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
120

 7.43 Standby

Description

Standby command tells the TCS that currently the instrument is not using
one or both of the telescope sides, but the side(s) will not given over to
another instrument for control. This command is useful to avoid that other
instruments change the settings that the authorized instrument have
already done before the observations

Syntax

Result * Standby(int LEVEL, const char * SIDE)

Attributes
• int LEVEL (in)

 Purpose: to specify the new value of the standby level. The meaning of the standby
 levels is TBD, and will probably be instrument specific.

 Description: integer value to represent the standby level.
 Unit: unitless
 Range or possible values: TBD
 Default value: -

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

•

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instruments must be previously authorized.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
121

After execution

• The specified side is in an “standby” state. No other instrument can
take control of it.

• We don't expect the TCS to send back any parameter. The evaluation
of the command’s result will let us know if the command was
successfully executed by the TCS.

Examples

...
aResult = anIIF->Standby(4, SIDE_RIGHT);
...

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
122

 7.44 StartGuiding

Description

This command is used to start again the guiding loop, using the existing
information and the setup declared in the last PresetGuiding command
provided for the given telescope side.

Syntax

Result * StartGuiding()

Attributes

• Nones.

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• PresetTelescope and PreseGuiding must be done.
• Telescope is tracking.

After execution

• Telescope is tracking and guiding.
• We don't expect the TCS to send back any parameter. The evaluation

of the command’s result will let us know if the command was
successfully executed by the TCS.

Examples

....
aResult = anIIF->StartGuiding();
....

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
123

 7.45 StepFocus

Description

StepFocus moves the respective focus position, by moving the OPE a given
distance in the direction of of the telescope's Z axis6.

Syntax

Result * StepFocus(double RELPOS, opeType OPE,
const char * SIDE)

Attributes

• double RELPOS (in)
 Purpose: to specify the new relative position Z of the respective optical element.
 Description: double value to represent the delta to the current position.
 Unit: millimeter
 Range or possible values: Depends on OPE and current position.
 Default value: -

• opeType OPE (in)
 Purpose: to specify the optical element which should move in Z.
 Description: enumerated variable to define the optical element (OPE)7. See

 description in section 7.
 Unit: unitless
 Range or possible values: M1 | M2 | M3 | M1M2 (scale-preserving focus)
 Default value: -

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

 RESCODE_OK: Command accepted.

7 Note that M3 does not move in z in the traditional sense. See figure 6.3 for more details.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
124

Preconditions

• The instrument must be authorized.
• The telescope must be observing.
• The OPE can be moved.
• The telescope might be tracking, guiding or controlling AOS.

After execution

• OPE is on a new position.
• Telescope is observing.
• We don't expect the TCS to send back any parameter. The evaluation

of the command’s result will let us know if the command was
successfully executed by the TCS.

Examples

...
aResult = anIIF->StepFocus(-1.42, M1, SIDE_LEFT);
...

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
125

 7.46 StopGuiding

Description

This command is issued to stop the current guiding operation.

Syntax

Result * StopGuiding()

Attributes

• None

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• The telescope must be observing and guiding, otherwise this

command has no effect.

After execution

• The telescope is observing, tracking and not guiding.
• We don't expect the TCS to send back any parameter. The evaluation

of the command’s result will let us know if the command was
successfully executed by the GCS or AOS.

Examples

....
aResult = anIIF->StopGuiding();
....

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
126

 7.47 TelescopeMove (Prototype)

Description

This command moves the entire optics on a single side as a rigid body.

Syntax

Result * TelescopeMove(float TRANSX,
float TRANSY,
float TRANSZ,
moveType MOVE_TYPE,
const char * SIDE)

Attributes

• float TRANSX,TRANSY,TRANSZ (in)
 Purpose: to specify the translation value in XYZ.

 Description: float value to define the translation value.
 Unit: TBD
 Range or possible values: TBD
 Default value: -

• moveType MOVE_TYPE (in)
 Purpose: to specify the movement type, relative or absolute.
 Description: enumerated variable to define the movement type, “relative” or

 “absolute”.
 Unit: unitless
 Range or possible values: MV_REL | MV_ABS
 Default value:-

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL indicating an error

RESCODE_OK The command was accepted.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
127

Preconditions

• The instruments must be previously authorized.

After execution

• We don't expect the TCS to send back any parameter. The evaluation
of the command’s result (described in detail on section 8.4) will let us
know if the command was successfully executed by the TCS.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
128

 7.48 TelescopeRotate (Prototype)

Description

This command rotates the entire optics on a single side as a rigid body.

Syntax

Result * TelescopeRotate(rotcenterType ROTATIONCENTER,
 float ANGLEX,
 float ANGLEY,
 float ANGLEZ,
 moveType MOVE_TYPE,
 const char * SIDE)

Attributes

• rotcenterType ROTATIONCENTER (in)
 Purpose:
 Description: enumerated variable to define the rotation center.
 Unit: unitless
 Range or possible values: M1 | M2 | M3 | FS_PRIME | FS_DIRECTGREGORIAN |

ROT_CENTER_POS
 Default value: -

• float ANGLEX,ANGLEY,ANGLEZ (in)
 Purpose: to specify the rotation angle in X, Y, and Z.

 Description: float value to define the rotation angle.
 Unit: TBD
 Range or possible values: TBD
 Default value: -

• moveType MOVE_TYPE (in)
 Purpose: to specify the coordinate type, relative or absolute.
 Description: enumerated variable to define the movement type, relative or

 absolute.
 Unit: unitless
 Range or possible values: MV_REL | MV_ABS
 Default value: -

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
129

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL indicating an error

RESCODE_OK The command was accepted.

Preconditions

• The instruments must be previously authorized.
• The OPE can be moved.

After execution

• The entire optics are in a new position.
• We don't expect the TCS to send back any parameter. The evaluation

of the command’s result (described in detail on section 8.4) will let us
know if the command was successfully executed by the TCS.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
130

 7.49 TelescopeScale (Prototype)

Description

It adjusts the overall plate scale of the telescope side as delivered to the
instrument. The plate scale will be changed and the side will remain in
focus.

Syntax

Result * TelescopeScale(float SCALE, const char * SIDE)

Attributes

• float SCALE (in)
 Purpose:

 Description: float value to define the scale.
 Unit: unitless
 Range or possible values: [-2.5E-4 , -2.5E-4]
 Default value: -

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL indicating an error

RESCODE_OK The command was accepted.

Preconditions

• The instruments must be previously authorized.
• The OPE can be moved.

After execution

• We don't expect the TCS to send back any parameter. The evaluation

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
131

of the command’s result (described in detail on section 8.4) will let us
know if the command was successfully executed by the TCS.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
132

 7.50 TipTilt

Description

The TipTilt command moves an OPE in tip or tilt direction, relative to the
current position.
Please note that for OPE M3, XROTATION is Tip, and YROTATION is Tilt,
which are defined local to the M3 mirror. Positive tip will move the beam
up, and positive tilt will move the beam toward the front of the telescope,
regardless of side.

Syntax

Result * TipTilt(double XROTATION, double YROTATION,
 opeType OPE, const char * SIDE)

Attributes

• double XROTATION (in)
 Purpose: to specify the angle to rotate around x axis, relative to the current position

 with a precision of 0.001 micro radians.
 Description: double value to represent the angle to rotate around x axis.
 Unit: micro radians
 Range or possible values: Depends on OPE.
 Default value: -

• double YROTATION (in)
 Purpose: to specify the angle to rotate around y axis, relative to the current position

 with a precision of 0.001 micro radians.
 Description: double value to represent the angle to rotate around y axis.
 Unit: micro radians
 Range or possible values: Depends on OPE.
 Default value: -

• opeType OPE (in)
 Purpose: to specify the optical element this command applies to. The OPE could be

 the primary, the secondary or the tertiary mirror.
 Description: enumerated variable to define the optical element (OPE). See

 description in section 7.
 Unit: unitless
 Range or possible values: M1 | M2 | M3
 Default value: M1

• const char * SIDE (in)
 Purpose: to specify the side of the telescope.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
133

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was accepted and successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• The telescope must be observing.
• The OPE can be moved
• The telescope might be guiding or controlling AO.

After execution

• OPE is on a new position.
• Telescope is observing.
• We don't expect the TCS to send back any parameter. The evaluation

of the command’s result will let us know if the command was
successfully executed by the TCS.

Examples

....
aResult = anIIF->TipTilt(1.255, -0.815, M1, SIDE_LEFT);
...

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
134

 7.51 UpdateGuidestar

Description

This command is used to update the list of guide stars for the specified
side.

Syntax

Result * UpdateGuidestar (Position ** GUIDESTARS,
 const char * SIDE)

Attributes

• Position ** GUIDESTARS (in)
 Purpose: to specify the list of guide stars.
 Description: Position structure to define the guide star list. See definition in

 section 7.
 Unit: unitless
 Range or possible values: -
 Default value: -

• const char * SIDE (in)
 Purpose: to define the side this command applies to.
 Description: string to define the side, “left”, “right” or “both”.
 Unit: unitless
 Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH
 Default value: -

Return values

• Result * RESULT (returned)
 Purpose: to evaluate if the command was successfully executed.
 Description: Result structure received from the TCS with the result code, a text

 describing the result code and a request handle, which can be used to
 query for further information.

 Unit: unitless
 Range or possible values: Result code = RESCODE_FAIL: an error occurred.

RESCODE_OK: Command accepted.

Preconditions

• The instrument must be authorized.
• The telescope must be ready to move, to track and control the active

optic system.
• In the current version of GCS it is required to issue this command

before the start of the acquisition in order to have an effect. This

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
135

restriction might change or become obsolete with future versions of
GCS

After execution

• We don't expect the TCS to send back any parameter. The evaluation
of the command’s result (described in detail on section 8.4) will let us
know if the command was successfully executed by the TCS.

Examples

....
Position *star1 = new Position(2.354, .1234, COORD_RADEC_SKY, J2000,

2000.0,NULL, &magnitude, 3421);

Position *star2 = new Position(3.5, .6, COORD_ALTAZ, J2000,
&propm, &magnitude, 0);

Position *star3 = new Position(1.5, 1.6, COORD_RADEC_SKY, J2000, 2007.0,
&propm, &magnitude1, 2020);

guidestars = (Position **) malloc(4 * sizeof(Position *));
guidestars[0] = star1;
guidestars[1] = star2;
guidestars[2] = star3;
guidestars[3] = (Position *) NULL;

aResult = anIIF->UpdateGuidstar(guidestars , SIDE_LEFT);
....

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
136

 8 Process flow. Usage

The following section gives detailed information concerning the programmatic
use of the IIF classes and data types, describing a walk-through of the coding
steps that should be followed by the instrument teams when use the IIF libraries
to implement the processes for an entire observation cycle.

 8.1 Including IIF into the project

To access the IIF’s classes through object-oriented C++ code, the instrument
code developer includes the header file IIF.h. The include directive for the
C++ source file equivalent to the example in the above section read as
follows:

#include <IIF/Instrument/IIF.h>

To link the IIF libraries into a C++ project, one can use the same dynamic or
static library files, libLBTIIFlib.so or libLBTIIFlib.a, respectively. An
example for a C++ compiler and linker call to link in the IIF libraries follows:

g++ -I/usr/local/include/LBT –Wall iiftest_c++.cpp \
–o iiftest_c++ -lLBTIIFlib

For further details about the procedure to compile and install the IIF libraries
into the instrument control computer, see reference [2].

 8.2 Creating IIF and Authorizing with TCS

The first step in using the IIF libraries is to create a new instance of the IIF
class. When creating an IIF instance, instruments identify themselves by two
pieces of information:

1. their unique name (i.e., 'LBC', or 'LUCIFER2'),
2. their focal station, which consists of

a. the location of the instrument (i.e. 'prime', or 'directGregorian'),
plus

b. the telescope side over which they intend to control (i.e., 'left',
'right', or 'both').

The instrument control software now instantiates an IIF, in which instrument

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
137

ID and focal-station/side string must be correctly specified. Otherwise, an
exception will be thrown.

Instrument name Focus and side
LUCIFER bentGregorianFront both
LUCIFER1 bentGregorianFront left
LUCIFER2 bentGregorianFront right
LINC bentGregorianBack left, bentGregorianBack right,

bentGregorianBack both
LBTI bentGregorianCenter left, bentGregorianCenter right,

bentGregorianCenter both
PEPSI directGregorian both
PEPSI1 directGregorian left
PEPSI2 directGregorian right
PEPSIFIBER bentGregorianRearFiberFeed both
PEPSIFIBER1 bentGregorianRearFiberFeed left
PEPSIFIBER2 bentGregorianRearFiberFeed right
MODS directGregorian both
MODS1 directGregorian left
MODS2 directGregorian right
LBC prime both
LBCRED prime right
LBCBLUE prime left
MAT prime both

Table 8.1: list of valid instrument “name – focal station” combinations.

An example of how to code this in C++ code:

 ...
//Before any communication over the IIF, it needs to be initialized with
//IDs determining the instruments focal station and its name.

IIF * anIIF;
try
{

//pretend to be the left-side, prime focus blue-channel LBC.

 anIIF = new IIF("prime left", "LBCBLUE");
}
catch (int e)
{

cout << "The IIF failed to initialize" << endl;
exit(-1);

}
...

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
138

The next step is to authorize the instrument specified in the instantiation of
the IIF object, in order to request any command that potentially will change
the state of the telescope. To request such authorization, the ICS has to call
the IIF authorize() method.
If the authorization is granted by the TCS, this function returns true, allowing
the instrument to successfully issue new commands.
In case that another instrument already controls the specified side (or both
sides) of the telescope, authorize() returns false.
Please note that Authorize() does not return a CommandReturn object. See its
description for more details in section 7.12.

Coding in C++:

...
if (!anIIF->Authorize())
{

cout << "Authorize() was not successful..." << endl;
exit(-1);

}

cout << "Authorize() successful" << endl;
...

For multi-threaded ICS, TCS allows multiple authorizations, maintaining an
internal count for each side. Please find more details in sections 6.1.1, 6.1.2,
7.12, and section 8.5 as well.

 8.3 Command request process

In order to initiate command processing inside the TCS via the IIF, an
application needs to use the IIF, Result and StatusInfo classes provided by
the IIF libraries. These classes are described in detail in section 7.

After the creation and authorization of its own IIF instance (see details in
section 8.2), each IIF command immediately returns a Result entity, while
command processing might still be in process inside the TCS (i.e., the
telescope is still slewing, while the IIF’s PresetTelescope() command call
has already returned a Result instance).

Each Result instance, then contains a result code, which indicates if
requesting the specified action(s) from the TCS was successfully sent to the
TCS. If the result code indicates that there was a problem (i.e., it evaluates to
RESCODE_FAIL as defined by the IIF library’s header files), then the

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
139

programmer can find a textual indication of the reason for the failure in the
Result’s reply code.

Otherwise, the Result instance’s result code evaluates to RESCODE_OK. In this
successful case, another component of the result becomes meaningful, namely
the command handle, which is a pointer that identifies the associated
command processing inside the TCS. In the failure case above, this pointer is
simply NULL, but if the command was successfully sent to the TCS, then the
command handle has a value different from NULL.

Using a (non-null) command handle, the IIF’s GetCommandStatus() method
can be used to inquire about the status of the respective command’s
processing inside the TCS. This method returns a StatusInfo entity for a given
command handle, which can be used to query the command’s processing
status and to get the XML-based string representation of the command’s
result once processing has finished inside the TCS. More details about this
process can be found in section 8.4.

The UML activity diagram 8.1 shows the command request process.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
140

UML activity diagram 8.1: Command request process

 8.4 Command result evaluation

Once command processing has finished on the TCS’ side, the StatusInfo
object that is associated with this command exhibits a status code that differs
from STATE_RUNNING (See UML activity diagram 8.1); i.e., the command

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
141

status property of the respective StatusInfo object is either STATE_SUCCESS,
STATE_CANCELED, STATE_FAILURE, or STATE_WRONGHANDLE (as defined in file
StatusInfo.h).

The programmer has two options in waiting for such finishing of the command
processing: “asynchronous” or “synchronous” IIF command processing. In
“asynchronous” mode, the programmer will periodically execute the IIF’s
GetCommandStatus() method, in order to receive a new StatusInfo object,
with an updated command status property. The “synchronous” mode means
that the programmer can choose to halt the program thread’s execution until
the TCS has finished the command processing (“sleep wait”, no CPU activity
is consumed). To achieve this, the IIF user simply calls the Block() method
on the StatusInfo object that is associated with the requested command.

Table below briefly describes the meaning of the status code values
mentioned above.

Status code Description
STATE_RUNNING The command is still being executed by the TCS
STATE_SUCCESS The TCS has successfully finished processing the

associated command; note that the actual actions
requested to be performed by the telescope can
still have failed.

STATE_CANCELED The TCS command’s processing has been
previously cancelled.

STATE_FAILURE An error has occurred during execution of the
associated command by the TCS.

STATE_WRONGHANDLE There is no valid TCS-side command associated
with the StatusInfo object’s command handle.

Table 8.2: Status codes in StatusInfo.

If the status code is either STATE_SUCCESS, STATE_CANCELED, or
STATE_FAILURE, then the IIF user should analyze the command’s result that
was produced and returned by the TCS. In order to process the returned
result, the programmer has to access the StatusInfo object’s command
result property8. The string inside the command result is an XML-string
encoded CommandReturn object, as provided by the TCS’ Common Software
library. This section will explain how to access these objects’ data as it will be
most commonly accessed by the IIF user. For further details on the Common

8 NOTE: The command result will be STATE_NORESULT, if the user tries to retrieve the command
result on a StatusInfo object whose command handle is invalid, or NULL.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
142

Software library and the CommandReturn class, please consult the respective
sections of the LBT TCS Common Software documentation (See reference
[12]).

First, the IIF user instantiates a CommandReturn object. On this object, it calls
the deseralize() method with the above mentioned StatusInfo object’s
command result. As a consequence, the CommandReturn object is ready to
access the associated TCS command’s results in a more convenient way. In
order to decide if the actual actions inside the telescope control system,
which were triggered by firing off the associated TCS command, have been
performed without any problems, one has to check the CommandReturn’s
isError() method. If it returns false, then the processes inside the TCS
showed no glitches, otherwise, there were problems or failures.

The actual results (in the success case), or respectively indications about
errors (in the error case), are generally retrieved via CommandReturn’s
getResultCount() and getResultDescription(int n) methods. The first
method returns the number of results that can be queried via the second
method, while the second method returns an STL string representation of the
TCS command’s result, or error message respectively.

Let us see an example. We want to tip-tilt the primary mirror on the left side
(assuming the instrument is already authorized):

Result* aResult = anIIF->TipTilt(1.255, -0.815, M1, SIDE_LEFT);

if (aResult->GetresultCode() != RESCODE_FAIL)
{
 //Once TCS has finished, we want to know the status of the command;
 //In order to do it, we instantiate a StatusInfo object.
 StatusInfo* statusInf = anIIF->GetCommandStatus(aResult->GetcommandHandle());
 statusInf->Block(); // wait for TCS

 cout << "TIPTILT command status: "<< statusInf->GetCommandStatus() << endl;

 //get the information from the XML-string encoded CommandReturn object
 CommandReturn cmdRet;

 cmdRet.deserialize(statusInf->GetCommandResult());

 //Check if the deserialization fails
 if(cmdRet.isError()) cout << "TIPTILT command result status: Error" << endl;
 else cout << "TIPTILT command result status: OK" << endl;

 cout << "TIPTILT command result: ";

 // get the result(s) of the command
 for(int i=1; i<=cmdRet.getResultCount(); i++)

cout << cmdRet.getResultDescription(i) << endl;

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
143

 delete statusInf;
}
else
{
 cout << "TipTilt execution failed: " << aResult->GetresultString() << endl;
}
 delete aResult; // free memory for CSQHandle

An exception to the rule that all results are accessed via
getResultDescription() is made for the LBC IIF’s
GetRotatorTrajectory()and GetMultiParamer() (only for the C wrapper).
Here, if the commands have finished successfully, the results are accessed via
StatusInfo_CommandResult_getTrajectory() method and
StatusInfo_CommandResult_getMultiParameter()respectively. Error
indications (i.e., if isError() returned true) can still be retrieved through
getResultDescription().

Note also that commands Authorize, Deauthorize and GetCommandStatus
do not return CommandReturn objects. See their descriptions for details.

 8.5 Deauthorizing the instruments. Destroying IIF instance

In order to let the TCS know that an instrument wants to surrender control of
one or more telescope sides (end of the observation), the instrument control
code must execute the IIF’s Deauthorize() command. The IIF user has to
specify the telescope side(s) that it wants to release, i.e., SIDE_LEFT,
SIDE_RIGHT, or SIDE_BOTH.
The Deauthorize command can return the following:

Side String result Meaning
SIDE_LEFT AUTHORIZED left side is still authorized
SIDE_LEFT DEREGISTERED left side is not authorized
SIDE_RIGHT AUTHORIZED right side is still authorized
SIDE_RIGHT DEREGISTERED right side is not authorized
SIDE_BOTH AUTHORIZED both sides are still authorized
SIDE_BOTH DEREGISTERED both sides are not authorized
SIDE_BOTH DEREGISTERED left left side is not authorized, right side

is still authorized
SIDE_BOTH DEREGISTERED right right side is not authorized, left side

is still authorized

Table 8.3: Possible results the Deauthorize command can return.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
144

The returned string will be DEREGISTERED if the authorized count is now zero.
If there are still authorize requests remaining, the string will be AUTHORIZED.
Thus every successful Authorize command must be paired with a
Deauthorize command in order to fully release that side of the telescope.

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
145

 8.6 Full example

The following code shows the entire process in order to communicate with the
TCS, initializing IIF, sending commands over the TCS<->Instrument interface
and printing the results and error messages to the standard output (stdout).
You will find more examples ready to compile and use in the source code of
the IIF (LBTO/TCS/IIF/Instrument/Examples).

#include <IIF/Instrument/IIF.h>

int main(int argc, char *argv[])
{

// Before any communication over the IIF, it needs to be initialized with
// IDs determining the instruments focal station and its name.

IIF * anIIF;
try
{

//pretend to be the left-side, prime focus blue-channel LBC
 anIIF = new IIF("prime left", "LBCBLUE");

}
catch (int e)
{

cout << "The IIF failed to initialize” << endl;
exit(-1);

}

// Permission for commanding the respective telescope sides is requested,
// and -upon failure to achieve authorization- the program is exited
if (!anIIF->Authorize())
{

cout << "Authorize() was not successful ... terminating test program.";
exit(-1);

}
cout << "Authorize() successful" << endl;

// Declare the result object reference needed as a container for the
// information returned via the IIF.

Result* aResult;

// Initialize some objects to use as example

MagnitudeType magnitude1 = {-27.0, V, 1.5, B_V};
MagnitudeType magnitude2 = {20.0, R ,2.0, U_V};
ProperMotionType propm1= {0.123, 0.234};
ProperMotionType propm2= {0.567, 0.789};
Position *target =
new Position(3.5,1.6,COORD_RADEC_SKY, J2000, 2007, &propm1, &magnitude1, 2000);
Position *guide1 =
new Position(1.5234,1.6123,COORD_RADEC_SKY, J2000, 2007, &propm1, &magnitude1,

2020);
Position *guide2 =
new Position(3.5234,2.23,COORD_RADEC_SKY, J2000, 2007, &propm1, &magnitude1,

2100);

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
146

Offset *offset;
Hotspot *hotspot = new Hotspot(3.5, 1.6);
Position **guidestars;

// Get some Parameters from the data dictionary
cout << "GetMultiParameter" << endl;

MultiDDEntry multiEntries;
multiEntries.PushEntry("csq.authorizedInstrument.left");
multiEntries.PushEntry("csq.authorizedCount.left");
multiEntries.PushEntry("csq.authorizedFocalStation.left");
multiEntries.PushEntry("csq.standbyLevel.left");
multiEntries.PushEntry("pmc.side[1].temperature");

aResult = anIIF->GetMultiParameter(multiEntries);

if (aResult->GetresultCode() != RESCODE_FAIL)
{

StatusInfo* statusInf =
anIIF->GetCommandStatus(aResult->GetcommandHandle());

statusInf->Block(); /* wait for TCS */

cout << "GETMULTIPARAMETER command status: " <<
statusInf->GetCommandStatus() << endl;

CommandReturn cmdRet;

cmdRet.deserialize(statusInf->GetCommandResult());

if(cmdRet.isError())
cout << "GETMULTIPARAMETER command result status: Error" << endl;

else
cout << "GETMULTIPARAMETER command result status: OK" << endl;

cout << "GETMULTIPARAMETER command result: ";
if(cmdRet.isError()) cout << "FAILED" << endl;
else cout << "SUCCESS" << endl;
for(int i=1; i<=cmdRet.getResultCount(); i++)

cout << cmdRet.getResultDescription(i) << endl;
delete statusInf;
} else {
cout << "GetMultiParameter execution failed: " <<

aResult->GetresultString() << endl;
}

delete aResult; /* free memory for CSQHandle */

cout << "Preset" << endl;

offset = new Offset(2.34, .124, COORD_RADEC_FOCAL);

guidestars = (Position **) malloc(4 * sizeof(Position *));
guidestars[0] = target;
guidestars[1] = guide1;
guidestars[2] = guide2;
guidestars[3] = (Position *) NULL;

// Call PresetTelescope()
aResult =

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
147

 anIIF->PresetTelescope(1.0, ROTATOR_PSTN, target, guidestars, MODE_ACTIVE,
 SIDE_LEFT, true);

if (aResult->GetresultCode() != RESCODE_FAIL)
{

StatusInfo* statusInf =
anIIF->GetCommandStatus(aResult->GetcommandHandle());

statusInf->Block(); /* wait for TCS */

cout << "PRESET_TELESCOPE command status: " <<
statusInf->GetCommandStatus() << endl;

CommandReturn cmdRet;

cmdRet.deserialize(statusInf->GetCommandResult());

if(cmdRet.isError())
cout << "PRESET_TELESCOPE command result status: Error" << endl;

else
cout << "PRESET_TELESCOPE command result status: OK" << endl;

cout << "PRESET_TELESCOPE command result: ";
for(int i=1; i<=cmdRet.getResultCount(); i++)

cout << cmdRet.getResultDescription(i) << endl;

delete statusInf;
}
else
{

cout << "PresetTelescope execution failed: " <<
 aResult->GetresultString() << endl;

}

delete aResult; /* free memory for CSQHandle */
delete offset;
delete guidestars;

//------------- Tell telescope that the instrument wants to idle -------------
cout << "Deauthorize" << endl;

 // Call Deauthorize(), this indicating that the observation has finished.

aResult = anIIF->Deauthorize(SIDE_LEFT);

if (aResult->GetresultCode() != RESCODE_FAIL)
{

StatusInfo* statusInf =
anIIF->GetCommandStatus(aResult->GetcommandHandle());

statusInf->Block(); /* wait for TCS */

cout << "DEAUTHORIZE command status: "
<< statusInf->GetCommandStatus() << endl;

cout << "DEAUTHORIZE command result: "
<< statusInf->GetCommandResult() << endl;

delete statusInf;

}
else

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
148

{
cout << "Deauthorize execution failed: "
 << aResult->GetresultString() << endl;

}

delete aResult; /* free memory for CSQHandle */

//----------------------------------- Lead out -----------------------------------
// Clean up after yourself when done

delete anIIF;

// Return an exit code indicating that everything went OK.

return 0;
}

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
149

 9 References

[1] J. Borelli, T. Schmelmer, T. Axelrod, M. Wagner, “Command Set at the
Instrument -Telescope Interface for the LBT”, LBT document CAN 481g010d
(Draft: August, 2006)

[2] C. Biddick, A. Lovell-Troy, “Instrument Team IIF Testing Instructions”, LBT
document CAN 481s265a (Draft: July, 2006)

[3] L. Fini, L. Busoni, A. Puglisi, “AOS Functional Description”, LBT document
CAN 486f006b (December, 2006)

[4] T. Sargent, “Instrument Rotator Control SW Specification”, LBT document
CAN 678s001f (December, 2006)

[5] J. Borelli, T. Schmelmer, “Instrument Interface User Guide”, LBT document
CAN 481s261b (August, 2006)

[6] W.Gaessler, M. Kuerster, “Linc Nirvana-Telescope Control Software”, LN-
MPIA-SWDR-ICS-010 (December, 2006)

[7] R. Pogge, “MODS and LBT TCS Use Case description”, OSU-MODS-2006-002
(January, 2007)

[8] M. Juette, V. Knierim, “LUCIFER Use cases Description” (January, 2007)

[9] V. Vaitheeswaran, “LBTI and LBT use case document”, LBTI-SW-100
(February, 2007)

[10] I. Ilyin, M. Andersen, “Use case for PEPSI at the LBT” (March, 2007)

[11] R. Noll, "Zernike Polynomials and Atmospheric Turbulence", J. Opt. Soc.
Am., Vol 66, No. 3 (March 1976).

[12] G. Gibson, C. Biddick, “Common Software Description” LBT document CAN
481s501a (July, 2006)

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
150

Appendix A : Global definitions

File: LBT/IIFGlobal.h

Definition of the focal station ID for the prime focus
#define FS_PRIME "prime"

Definition of the focal station ID for the direct Gregorian focus
#define FS_DIRECTGREGORIAN "directGregorian"

Definition of the focal station ID for the bent Gregorian focus (back)
#define FS_BENTGREGBACK "bentGregorianBack"

Definition of the focal station ID for the bent Gregorian focus (front)
define FS_BENTGREGFRONT "bentGregorianFront"

Definition of the focal station ID for the bent Gregorian focus (center)
#define FS_BENTGREGCENTER "bentGregorianCenter"

Definition of the focal station ID for the fiber feed in the bent Gregorian focus
#define FS_BENTGREGREARFIBER "bentGregorianRearFiberFeed"

Definition of the instrument ID for the first LUCIFER
#define IS_LUCIFER1 "LUCIFER1"

Definition of the instrument ID for the second LUCIFER
#define IS_LUCIFER2 "LUCIFER2"

Definition of the instrument ID for a virtual LUCIFER instrument, controlling both sides
#define IS_LUCIFER "LUCIFER"

Definition of the instrument ID for LINC/NIRVANA
#define IS_LINC "LINC"

Definition of the instrument ID for LBTI
#define IS_LBTI "LBTI"

Definition of the instrument ID for the first PEPSI in direct Gregorian
#define IS_PEPSI1 "PEPSI1"

Definition of the instrument ID for the second PEPSI in direct Gregorian
#define IS_PEPSI2 "PEPSI2"

Definition of the instrument ID for a virtual PEPSI instrument, controlling both sides
#define IS_PEPSI "PEPSI"

Definition of the instrument ID for the first PEPSI in the bent Gregorian
#define IS_PEPSIFIBER1 "PEPSIFIBER1"

Definition of the instrument ID for the second PEPSI in the bent Gregorian
#define IS_PEPSIFIBER2 "PEPSIFIBER2"

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
151

Definition of the instrument ID for a virtual PEPSIFIBER instrument, controlling both sides
#define IS_PEPSIFIBER "PEPSIFIBER"

Definition of the instrument ID for the first MODS
#define IS_MODS1 "MODS1"

Definition of the instrument ID for a combined MODS
#define IS_MODS2 "MODS2"

Definition of the instrument ID for a virtual MODS instrument, controlling both sides
#define IS_MODS "MODS"

Definition of the instrument ID for red-channel LBC
#define IS_LBCRED "LBCRED"

Definition of the instrument ID for blue-channel LBC
#define IS_LBCBLUE "LBCBLUE"

Definition of the instrument ID for a virtual LBC instrument, controlling both sides
#define IS_LBC "LBC"

Definition of the instrument ID for MAT
#define IS_MAT "MAT"

Definition of the strings specifying the left telescope side
#define SIDE_LEFT "left"

Definition of the strings specifying the right telescope side
#define SIDE_RIGHT "right"

Definition of the strings specifying both telescope sides
#define SIDE_BOTH "both"

String constant that is returned by a call in IIF::Authorize, in case the IIF instance has
successfully registered with the CSQ
#define INSTANCE_AUTHORIZED "AUTHORIZED"

/** Enum type representing the optical elements (OPE)*/
enum opeType
{

M1, M2, M3, M1M2, M1M3, M2M3, M1M2M3, MOUNT, HEXAPOD, DEFAULT
};

/** Enum type representing the type of movement: relative or absolute */
enum moveType
{

MV_REL, MV_ABS
};

/** Enum type representing the operational mode of the telescope*/
enum modeType
{
 MODE_STATIC, /** Static mode */

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
152

 MODE_TRACK, /** Passive Mode */
 MODE_GUIDE, /** Guided Mode */
 MODE_ACTIVE, /** Active Mode */
 MODE_ADAPTIVE, /** Adaptive Mode */
 MODE_INTERFEROMETRIC /** Interferometric Mode */

};

/** Enum type representing the AO mode*/
enum AOmodeType
{

 FIX_AO,
 TTM_AO,
 ACE_AO,
 ICE_A

};

/** Enum type representing the Coordinate system */
enum coordType
{
 COORD_RADEC_SKY, /** Right Ascension, Declination, on the sky*/
 COORD_RADEC_FOCAL, /** Right Ascension, Declination, on the focal plane */
 COORD_ALTAZ, /** Altitude, Azimuth */
 COORD_FOCAL_PIX, /** Focal Plane in Pixels*/
 COORD_FOCAL_MM /** Focal Plane in millimeters*/
};

/** Enum type representing the instrument's rotator mode */
enum rotatorType
{

ROTATOR_PSTN, /** Instrument rotator's in position mode */
ROTATOR_PAR, /** Instrument rotator's vertical mode, parallactic ang. */
ROTATOR_NATIVE, /** To use the rotator's native reference frame.*/
ROTATOR_GRAV, /** To use the gravitational angle. */
ROTATOR_IDLE /** Instrument rotator's idle mode */

};

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
153

Appendix B : TCSIIF commands status

IIF Command Section Status Comments

AOPreset 7.1 Pending input

AOAcquireRef 7.2 Pending input

AORefine 7.3 Pending input

AOStart 7.4 Pending input

AOOffsetXY 7.5 Pending input

AOOffsetZ 7.6 Pending input

AOCorrectModes 7.7 Pending input

AOStop 7.8 Under development

AOPause 7.9 Under development

AOResume 7.10 Under development

AOUserPanic 7.11 Under development

Authorize 7.12 Operational

CancelCommand 7.13 Operational Most TCS commands do
not support cancel

Deauthorize 7.14 Operational

GetCommandStatus 7.15 Operational

GetMultiParameter 7.16 Operational

GetParameter 7.17 Operational

GetRotatorTrajectory 7.18 Operational At the moment, it is only
used by LBC

LogEvent 7.19 Operational

Move 7.20 Under development

MoveFocus 7.21 Operational Only supports M1

MoveXY 7.22 Operational Only supports M1

MoveXYZ 7.23 Under development

OffsetGuiding 7.24 Operational

OffsetPointing 7.25 Pending input There is an operational
version for LBC, but it has
to be modified in order to
support other instruments

PauseGuiding 7.26 Under development

PresetGuiding 7.27 Pending input

PresetTelescope 7.28 Partly Operational

ResumeGuiding 7.29 Under development

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
154

RotateCommon 7.30 Under development

RotatePrimary 7.31 Operational

RotateZ 7.32 Under development

RotAdjustPosition 7.33 Under development

RotHold 7.34 Under development

RotMaximizeTime 7.35 Under development

RotServicePosition 7.36 Under development

RotSetRotator 7.37 Under development

RotTrack

RotNextPosition

7.38

7.39

Under development

Under development

SendWavefront 7.40 Operational Only supports M1 active
optics

SetMultiParameter 7.41 Operational

SetParameter 7.42 Operational

Standby 7.43 Under development

StartGuiding 7.44 Undefined

StepFocus 7.45 Operational Only supports M1

StopGuiding 7.46 Under development

TelescopeMove 7.47 Under development

TelescopeRotate 7.48 Under development

TelescopeScale 7.49 Under development

TipTilt 7.50 Operational Only supports M1

UpdateGuidestar 7.51 Undefined

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
155

--oOo --

LBT PROJECT
IIF-TCS C++ Interface Control Document

Doc. No. : 481s011
Issue : c
Date : 15-mar-2007

Page
156

Doc_info_start
Title: InstrumentTelescope Control Document
Document Type: Technical Manual
Source: Steward Observatory
Issued by: Jose L. Borelli
Date_of_Issue: 15Dec2007
Revised by:
Date_of_Revision: 20Mar2007
Checked by: Norm Cushing
Date_of_Check:
Accepted by:
Date_of_Acceptance:
Released by:
Date_of_Release:
File Type: Open Office Writer
Local Name: InstrumentTelescope Control Document
Category: 400
SubCategory: 480
Assembly: 481
SubAssembly:
Part Name:
CAN Designation: 481s011
Revision: c
Doc_info_end

	 1 Revision History
	 2 Table of contents
	 3 List of abbreviations
	 4 About this document
	 4.1 Purpose
	 4.2 Notes
	 5 Introduction
	 6 Functionality and Observation modes
	 6.1 Control Functionality
	 6.1.1 Authorizing with the TCS
	 6.1.2 Giving up control
	 6.1.3 Status
	 6.2 Basic Functionality
	 6.2.1 Pointing
	 6.2.2 Tracking
	 6.2.3 Offset
	 6.2.4 Focusing
	 6.2.5 Guiding
	 6.3 Alignment Functionality
	 6.4 Adaptive Optic System
	 7 Command set at the IIF-TCS
	 7.1 AOPreset
	 7.2 AOAcquireRef
	 7.3 AORefine
	 7.4 AOStart
	 7.5 AOOffsetXY
	 7.6 AOOffsetZ
	 7.7 AOCorrectModes
	 7.8 AOStop
	 7.9 AOPause
	 7.10 AOResume
	 7.11 AOUserPanic
	 7.12 Authorize
	 7.13 CancelCommand
	 7.14 Deauthorize
	 7.15 GetCommandStatus
	 7.16 GetMultiParameter
	 7.17 GetParameter
	 7.18 GetRotatorTrajectory
	 7.19 LogEvent
	 7.20 Move
	 7.21 MoveFocus
	 7.22 MoveXY
	 7.23 MoveXYZ
	 7.24 OffsetGuiding
	 7.25 OffsetPointing
	 7.26 PauseGuiding
	 7.27 PresetGuiding
	 7.28 PresetTelescope
	 7.29 ResumeGuiding
	 7.30 RotateCommon
	 7.31 RotatePrimary
	 7.32 RotateZ
	 7.33 RotAdjustPosition (Prototype)
	 7.34 RotHold (Prototype)
	 7.35 RotMaximizeTime (Prototype)
	 7.36 RotServicePosition (Prototype)
	 7.37 RotSetRotator (Prototype)
	 7.38 RotTrack (Prototype)
	 7.39 RotNextPosition (Prototype)
	 7.40 SendWavefront
	 7.41 SetMultiParameter
	 7.42 SetParameter
	 7.43 Standby
	 7.44 StartGuiding
	 7.45 StepFocus
	 7.46 StopGuiding
	 7.47 TelescopeMove (Prototype)
	 7.48 TelescopeRotate (Prototype)
	 7.49 TelescopeScale (Prototype)
	 7.50 TipTilt
	 7.51 UpdateGuidestar
	 8 Process flow. Usage
	 8.1 Including IIF into the project
	 8.2 Creating IIF and Authorizing with TCS
	 8.3 Command request process
	 8.4 Command result evaluation
	 8.5 De-authorizing the instruments. Destroying IIF instance
	 8.6 Full example
	 9 References
	Appendix A : Global definitions
	Appendix B : TCS-IIF commands status

