
Instrument Interface ­ IIFInstrument Interface ­ IIF
LBTOLBTO

IIF API
Commands that have significantly changed in the

last months

Jose L. Borelli
MPIA

OverviewOverview

● New architecture aspects
● Enumerated type variables vs. string variables
● New classes and structures. Implications

● IIF commands that have significantly changed in the last
months

● New IIF commands added to the set

Enumerated type variablesEnumerated type variables
● Coordinates systems

CoordType

{

 COORD_RADEC_SKY, * equatorial coordinates on the sky

 COORD_RADEC_FOCAL, * equatorial coordinates on the focal plane

 COORD_ALTAZ, * the ALT/AZ coordinates

 COORD_FOCAL_PIX, * instrument focal plane coordinates in pixels

 COORD_FOCAL_MM * instrument focal plane coordinates in millimeters

};

Enumerated type variablesEnumerated type variables
● Operational modes of the telescope.

modeType

{

MODE_STATIC, * Slew the Teles. to the requested location on sky, and
stop.

MODE_TRACK, * Sends the Teles. to the coordinates, enters open-loop
 tracking.

MODE_GUIDE, * Trakcing and guiding are in operation. Requires a guide
star from the instrument.

MODE_ACTIVE, * Tracking, guiding, and active optics are enganged. Ends
 closed-loop in both XY guiding and wavefront sensing.

MODE_ADAPTIVE, * Tracking, guiding, and adaptive optics are
enganged. Big-W must end up closed-loop at high speed.

MODE_INTERFEROMETRIC * Closed-loop with Big-W on both sides. Implies
 synchronization between the 2 sides.

};

Enumerated type variablesEnumerated type variables
● Different Rotator Modes of the instruments

rotatorType (previously trackmode)

{

ROTATE_PAR, * Represents the parallactic angle, which is
vertical with respect to the horizon.

ROTATOR_PSTN, * Relative to the North

ROTATOR_NATIVE, * To use the rotator's native reference
 frame.

ROTATOR_GRAV, * To use the gravitational angle.

ROTATOR_IDLE, * For those instruments that will not use
the rotator at all.

};

Enumerated type variablesEnumerated type variables
● Others enumerated variables used as arguments in many of

the IIF commands

● opeType, to define the optical elements.

● moveType, to define the type of movement, relative or absolute.

● equinoxType,to chose between the equatorial coordinate system
based on the mean dynamical equator and equinox of the J2000 epoch,
and ICRS (International Celestial Reference System).

● AOmodeType, to represent the different AO operational modes.

● filterType, representing the different filters, U, V, etc.

● colorType, to represent the different color types of the object,
U-B, B-V, etc.

The Offset classThe Offset class
● The Offset class, used by the commands PresetTelescope,
OffsetPointing and OffsetGuiding, is nothing else that two
delta terms.

● These are relative deltas, referenced to the last coordinates
provided.

● The constructor has the following parameters:

● double coord1 * to define the offset in
RA, ALT or xi.

● double coord2 * to define the offset in
DEC, AZ, or eta.

● coordType system * the coordinate system of
reference for the coordinates.

The Offset classThe Offset class
Units and ranges

Parameters
double coord1

Unit
radians
radians
radians
pixels
millimiters

Range
­PI to PI
­PI to PI
­PI/2 to PI/2
def. by the instrument
def. by the instrument

Coord. System
COORD_RADEC_SKY
COORD_RADEC_FOCAL
COORD_ALTAZ
COORD_FOCAL_PIX
COORD_FOCAL_MM

double coord2 radians
radians
radians
pixels
millimiters

­PI to PI
­PI to PI
­PI to PI
def. by the instrument
def. by the instrument

COORD_RADEC_SKY
COORD_RADEC_FOCAL
COORD_ALTAZ
COORD_FOCAL_PIX
COORD_FOCAL_MM

The Hotspot classThe Hotspot class
● The Hotspot is given in instrument focal plane coordinates.

These are an absolute X and Y values specific to the detector.

● The units are in pixels and the ranges are defined by the
instruments.

● The constructor has the following parameters:

● double coord1 * to define the X coordinate
of the hotspot

● double coord2 * to define the Y coordinate
of the hotspot

The Hotspot classThe Hotspot class
● Example: Detector during observation. The hotspot (hs) is the

best position on the detector.

xxx
xx

xxxxxx

rcxxx

h
h hs h

h

c

N

M

1

1

Detector (imaging)
c = detector center
rc = rotation center
hs = hotspot(x=3,y=3)
h = dither positions around the hs
x = bad pixels

The Position classThe Position class
● This class defines positions and all astronomically relevant

information about the science target to be observed and the
guide-stars.

● Position arguments:

● double coord1 * defines the first coordinate of the specified system
in RA, ALT or xi.

● double coord2 * defines the second coordinate of the specified
system in DEC, AZ or eta.

● coordType system * defines the coordinate system of reference
for the coordinates.

The Position classThe Position class
● Position arguments:

● equinoxType equinox * defines the value of the equinox for purpose of
precession

● double epoch * Represents the value used in conjunction with
proper motion values to reference the
coordinates to the equinox

● ProperMotionType *propmotion (optional) * specifies the potential proper
motion of the celestial object
described by the position

● MagnitudeType *magnitude (optional) * specifies the apparent magnitude
and filter of the celestial object

● unsigned int wavelength (optional) * computes the object's atmospheric
refraction correction

The Position classThe Position class
Units and ranges

double coord2 radians
radians

­1.0 to 2PI
­PI/2 to 5PI/2

COORD_RADEC_SKY
COORD_ALTAZ

Parameters
double coord1

Unit
radians
radians

Range
0.0 to 2PI
0.0 to PI/2

Coord. System (coordType)
COORD_RADEC_SKY
COORD_ALTAZ

Unsigned int wavelenght ­ nanometer 300 to 20000 (def. 500)

equinoxType equinox ­ ­ J2000 | ICRS

PresetTelescopePresetTelescope
● This command slew the telescope into position in order to begin

an observation cycle.

PresetTelescope (double ROTANGLE,
rotatorType ROTATORMODE,
Position* TARGET,
[Position** GUIDESTARS],
modeType MODE,
const char* SIDE,
[Offset* OFFSET],
[Hotspot* HOTSPOT],
[bool WRAPFLAG])

#enum 3
#enum 2

PresetTelescopePresetTelescope
● double ROTANGLE

● Purpose: to specify the value for the initial rotator angle.

● Unit: radian

● Range or possible values: -2PI to 2PI

● Default value: 0

● rotatorType ROTATORMODE

● Purpose: to specify the rotator mode of the instrument.

● Possible values:

ROTATOR_PAR | ROTATOR_PSTN | ROTATOR_NATIVE |

ROTATOR_GRAV | ROTATOR_IDLE

● Default value: -

PresetTelescopePresetTelescope
● Position * TARGET

● Purpose: To specify all characteristics of the target and its location
according to the coordinate system chosen.

● Position ** GUIDESTARS (optional)

● Purpose: To specify all characteristics of the guide stars and their
locations according to the coordinate system chosen.

● modeType MODE

● Purpose: to specify the operating mode of the telescope.

● Possible values:

MODE_STATIC | MODE_TRACK | MODE_GUIDE |

MODE_ACTIVE | MODE_ADAPTIVE| MODE_INTERFEROMETRIC

PresetTelescopePresetTelescope
● const char * SIDE

● Purpose: to specify the side of the telescope

● Range or possible values: SIDE_LEFT | SIDE_RIGHT | SIDE_BOTH

● Offset * OFFSET (optional)

● Purpose: to specify the offset for the target in RA and DEC, ALT and AZ, or
SFP coordinates.

● Default value: NULL

● Hotspot * HOTSPOT (optional)

● Purpose: to specify the reference position in the focal plane,

 by default, the center of the focal plane.

● Default value: NULL

PresetTelescopePresetTelescope
● bool WRAPERFLAG (optional)

● Purpose: This is a "maximize-time-on-target" flag, where true means to
choose the path that selects the cable wrap that will provide the longest
possible observing time on the object. false means to move from the
present position to a new object by the shortest path possible.

● Range or possible values: true | false

● Default value: false

OffsetPointingOffsetPointing
● OffsetPointing moves the telescope a small distance, setting the

value of the telescope pointing coordinates to the new position.

● It uses the existing target information and the setup declared in
the last PresetTelescope.

OffsetPointing (double ROTANGLE,
Offset * OFFSET,
opeType OPE,
bool NEWPOSITION,
moveType MOVETYPE,
const char * SIDE)

OffsetPointingOffsetPointing
● double ROTANGLE

● Purpose: to specify the value in radians of the rotation angle.

● Unit: radians

● Range: -2PI to 2PI

● Offset * OFFSET

● Purpose: to specify the offset from the position specified by the MOVETYPE
argument.

● moveType MOVETYPE

● Purpose: to determine if the movements are relatives or

 absolutes.

● Possible values: MV_REL | MV_ABS

● Default value: MV_REL

OffsetPointingOffsetPointing
● OpeType OPE

● Purpose: to specify the optical element to be moved.

● Possible values:

MOUNT | M1 | M2 | M3 | HEXAPOD | DEFAULT

● Default value: DEFAULT, which allows the pointing kernel to choose the
action which should be taken based upon its internal logic.

● bool NEWPOSITION

● Purpose: to determine if the target position should be changed or not.

● Possible values: true | false, where true means to move the guide
stage but do not change targetRA and DEC; false means to update RA and
DEC (dither).

● Default value: false

● Const char * SIDE

GetMultiParameterGetMultiParameter
● This command is used to read a block of entries from the data

dictionary in one shot.

● Argument: a MultiDDEntry object, which is the list of
parameters to be read by the command from the data
dictionary.

● This object must be populated with valid data dictionary entries,
using the internal method PushEntry(entry_name);

● It returns a list with the values of the requested data dictionary
entries.

GetMultiParameter(MultiDDEntry ENTRIES)

SetMultiParameterSetMultiParameter
● SetMultiParameter sets the values of the specified data

dictionary entries on the TCS in one shot

● The instrument only has permission to modify its own
predefined entries.

● Argument: MultiDDEntry object, which must be populated with
string pairs, the local data dictionary name, and the value
(PushEntry and PushValue).

● The CSQ subsystem will generate the fully qualified data
dictionary name as "csq.<InstrumentID>.entry_name".

SetMultiParameter(MultiDDEntry ENTRIES)

Get/SetMultiParameterGet/SetMultiParameter
● Example:

...

MultiDDEntry DDEntries;

DDEntries.PushEntry(“pmc.side[0].elevationAngle”);

DDEntries.PushEntry(“pmc.side[1].elevationAngle”);

aResult = anIIF->GetMultiParameter(DDEntries);

...

DDEntries.Clear();

DDEntries.PushEntry(“side[0].cooler” , “ON”);

DDEntries.PushEntry(“side[1].cooler” , “OFF”);

aResult = anIIF->SetMultiParameter(DDEntries);

...

Target acquisition ­ AlignmentTarget acquisition ­ Alignment
● MoveXY (double XMOTION, double YMOTION,

opeType OPE, const char * SIDE)

● moves an OPE in X or Y direction (micrometers), relative to the current
position.

● In closed-loop mode with w/W, this may require offsetting the relevant
stage/s as well to maintain lock on the specified reference star.

● Possible OPE: M1 | M2

● MoveFocus (double ABSPOS, opeType OPE,
const char * SIDE)

● MoveFocus moves an optical element to a new absolute position
z to adjust or to define a new focus position.

● Any focus move in closed-loop mode must be accompanied by the
corresponding offset of the w/W stage along the focus direction.

● Possible OPE: M1 | M2 | M3(piston) | M1M2

Target acquisition ­ AlignmentTarget acquisition ­ Alignment
● StepFocus (double RELPOS, opeType OPE,

const char * SIDE)

● moves the respective focus position, by moving the OPE a given distance
in the direction of of the telescope's Z axis

● Possible OPE: M1 | M2 | M3 | M1M2 (scale-preserving focus)

● TipTilt (double XROTATION, double YROTATION,
opeType OPE, const char * SIDE)

● The TipTilt command moves an OPE in tip or tilt direction,
relative to the current position

● For OPE M3, XROTATION is Tip, and YROTATION is Tilt, which
are defined local to the M3 mirror

● Positive tip will move the beam up

● Positive tilt will move the beam toward the front of the telescope,
regardless of side

Target acquisition ­ AlignmentTarget acquisition ­ Alignment
● Move (double X, double Y, double Z,

double RX, double RY, double RZ,
int D_FLAG, moveType MOVE_TYPE,
opeType OPE, double TIME,
const char * SIDE)

● X, Y, and Z represent the naked focal plane movements. For OPE M3 (M3
piston), X and Y are ignored.

● RX, RY, and RZ represent the the naked focal plane rotation. For OPE M3,
RX is M3 Tip, RY is M3 Tilt.

● MOVE_TYPE will determine if they are absolute or relative values.

● Possible OPE: M1 | M2 | M3 | M1M2 | M1M3 | M2M3 | M1M2M3 |
DEFAULT

● D_FLAG is a 6 bits flag with a bit for each of the preceding 6 variables. Bit
0 enables X, bit 1 enables Y, bit 2 enables Z, and so on.

● TIME: the lookahead time (sec) for the collimation correction

Target acquisition ­ AlignmentTarget acquisition ­ Alignment
● RotateCommon (double X, double Y, double Z,

double ANGLE, double DIRECTION,
const char * SIDE)

● Rotates M1 and M2 around a common point. The movement is relative.
Initial positions for the mirror are depending on the focal station; must be
defined in the collimation model.

● X, Y, and Z represent the position of the point the mirrors rotate around.
The coordinate zero is TBD.

● RotateZ (double ANGLE, moveType MOVETYPE,
const char * SIDE)

● Rotates M3 to adjust the incoming beam angle for the instrument.

● A relative rotation is incremental: it adds to the current position.

● An absolute rotation is with respect to the focal station position
maintained by the OSS. An absolute rotation of zero will go back
to the default focal station position.

Target acquisition ­ AlignmentTarget acquisition ­ Alignment
● TelescopeMove (double MX, double MY, double MZ,

moveType MOVETYPE, const char * SIDE)

● moves the entire optics on a single side as a rigid body

● MX, MY, and MZ represent the translation values in X, Y, and Z

● TelescopeRotate (rotcenterType ROTCENTER,
double RX, double RY, double RZ,
moveType MOVETYPE,
const char * SIDE)

● Rotates the entire optics on a single side as a rigid body

● RX, RY, and RZ represent the rotation angle in X, Y, and Z

● ROTCENTER: M1 | M2 | M3 | FS_PRIME | FS_DIRECTGREGORIAN |
ROT_CENTER_POS

Target acquisition ­ AlignmentTarget acquisition ­ Alignment
● TelescopeScale (double SCALE , const char * SIDE)

● Adjusts the overall plate scale of the telescope side as delivered to the
instrument. The plate scale will be changed and the side will remain in
focus.

● SCALE ranges: -2.5E-4 to 2.5E-4

● SCALE unit: TBD.

AOSAOS
● The Adaptive Optics Subsystem (AOS) provides all the functions

needed for interaction between the LBT Adaptive Optics system
and the rest of the telescope, including instruments.

● TCS-IIF provides a set of commands, that correspond exactly to
the AOS commands, in order to handle this subsystem.

● At the moment, they are only prototypes. TCS and AOS
teams need to work on the details

AO commandsAO commands
● AOPreset()

● is issued in a AOS observation service status in order to prepare the AO
system for an observation in adaptive mode.

● AOAcquireRef()

● issued after a AOPreset, requests the AOS to proceed into the reference
object acquisition, in order to find the reference star within the field of
view of the technical viewer.

● AORefine()

● is used to support the ICE-AO operating mode. It maybe used
to request the AOS to modify the value of some loop parameter
before closing the loop.

AO commandsAO commands
● AOStar()

● This command is used to request the closing of the AO loop.

● AOOffsetXY()

● is issued in AOS observation service status in order to offset the pointing
of the AOS.

● It is meaningful only in closed loop mode.

● AOOffsetZ()

● Used in AOS observation service status in order to offset the
focus of the AOS.

● It is meaningful only in closed loop mode.

● AOCorrectModes()

● used in AOS observation service status to apply a modal
correction on the mirror shape.

AO commandsAO commands
● AOStop()

● used to stop the current operation. After this command any setting defined
by a previous AOPreset is canceled.

● AOPause()

● This command is issued to temporarily suspend the current AO operation.

● AOResume()

● This command resumes suspended operation after a AOPause.

● AOUserPanic()

● This command is issued whenever some TCS subsystem,
including an instrument, detects any dangerous condition,
and decides to perform a fast shutdown.

Rotator commandsRotator commands
● RotSetRotator (bool ENABLE, const char * SIDE)

● This command is issued to enable or disable a rotator.

● “Enable” means to turn the rotator on and make it ready to respond to
commands.

● This command is specifically designed to be used by an instrument that is
not the “authorized” instrument. However, an authorized instrument can
invoke this command as necessary.

● RotAdjustPosition (double DELTA_ROTANGLE,
rotatorType ROTATORMODE,
const char * SIDE)

● Allows fine adjustments to the current rotator angle.

● It would normally be issued while the rotator is tracking.
In that case it makes an offset adjustment to the polynomials being
generated by PCS.

● Issued when the rotator is HOLDING, it will move the rotator
by the specified amount, resuming holding at that new position.

Rotator commandsRotator commands
● RotTrack (const char * SIDE)

● Makes rotator begin tracking according to the trajectory it is currently
receiving from the PCS.

● It will in general, need to do a slew to the target position and then start
tracking.

● RotHold (const char * SIDE)

● If the rotator is tracking or slewing, makes it stop moving and hold
position at the point it was at when it received the hold command.

● If the rotator is already holding position, this command
has no effect.

Rotator commandsRotator commands
● RotMaximizeTime (const char * SIDE)

● provides some control over the use of the rotator’s cable wrap.

● If they are not in the wrap which maximizes observing time on the object,
one or both will do a “slew-to-track” to acquire the same object in the
other end of their cable wrap.

● This command will either do nothing or it will slew the rotator and/or AZ
axis 360 degrees.

● RotServicePosition (double ANGLE, rotatorType ROTMODE,
const char * SIDE)

● Makes the rotator move to the specified angle in the specified
coordinate frame and hold at that position.

Rotator commandsRotator commands
● RotNextPosition (double RA, double DEC, double LIMIT,

const char * SIDE)

● It has no affect on telescope or rotator motion.

● The “time-to-limit” values for the “next position” in reflective memory will
be computed using these parameters. It also returns the current AZ and
EL for the specified object.

Guiding related commandsGuiding related commands
● PresetGuiding (Position ** GUIDESTARS,

const char * SIDE)

● This command is issued to start the guiding.

● The guide stars in the list will be tried in the order as they were provided.

● The first one that is usable will be the one the GCS will use for the guiding
and possible WF sensing.

● UpdateGuidestar (Position ** GUIDESTARS,
const char * SIDE)

● This command is used to update the list of guide stars for
the specified side.

● In the current version of GCS it is required to issue this command
before the start of the acquisition in order to have an effect.

● This restriction might change or become obsolete with future
versions of GCS.

Guiding related commandsGuiding related commands
● StopGuiding ()

● This command stops the current guiding operation.

● StartGuiding ()

● This command is used to start again the guiding loop, using the existing
information and the setup declared in the last PresetGuiding command
provided for the given telescope side.

● PauseGuiding ()

● This command is issued to temporarily suspend the current
guiding operation.

● ResumeGuiding ()

● This command resumes suspended operation after a PauseGuiding.

