
Help on a few PASSATA features
Guido Agapito

guido.agapito@inaf.it
INAF Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, Firenze, Italy

CONTENTS

1 INTRODUCTION 2

2 ZENITH ANGLE 2

3 ATMOSPHERE 2
3.1 Maximum simulation time 2
3.2 Delay given by light propagation through the layers 2
3.3 Cubes of phase 2

4 DEFORMABLE MIRRORS 3
4.1 DM set up 3
4.2 DM misalignments 3

5 WAVEFRONT SENSORS 4
5.1 WFS types 4

5.1.1 Valid sub-apertures 4
5.2 Extended sources 4
5.3 Chromaticity 7
5.4 WFS misalignments 8
5.5 WFS defects 9

6 DETECTOR 9

7 SLOPE COMPUTATION 9

8 CONTROL 10

9 VIBRATION AND ABERRATION 11

10 AUTOMATIC TAG NAME SELECTION 12

11 DATASTORE CLASS 12

12 DICTIONARIES MANAGEMENT 12

13 HOW TO RUN A SET OF SIMULATIONS 13

14 MODAL ANALYSIS 13

15 PSF VISUALIZATION 14

16 SIMULATION REPRODUCIBILITY 15

1 INTRODUCTION

Here we report the help to set up and use a few PASSATA (Agapito et al. 2016) features. In
general, this help is written with the more advanced function/classe in mind, like factory

class and function/classes contained in the cloop directory, but it can be extended in the
case that init and properties of the processing and data objects are directly used
paying attention to the variable names .

2 ZENITH ANGLE
params.main.zentihAngleInDeg is used in factory class to scale altitudes of
atmospheric layers and sources (also sodium layer altitude when kernels of elongated SH
spots are computed).

3 ATMOSPHERE

3.1 Maximum simulation time
Atmosphere evolution time is in general limited by the size of the phase screen (it can be set
with params.atmo.pixel_phasescreens, and its default value is 8192L) and the wind
speed, but params.atmo.cycle_screens can be set (=1B) to start from the beginning of
the screen when the end is reached. This gives a discontinuity unless phase screens are
cyclic (params.atmo.make_cycle).

3.2 Delay given by light propagation through the layers
params.atmo.extra_delta_time can be used to set up the extra_delta_time

property in atmo_evolution class. For example, it can be set as:

params.atmo.extra_delta_time = params.atmo.heights / 299792458d

to consider the different time in which light from a star passes through the atmospheric
layers. Instead if an upward propagation is considered it can be set as:

params.atmo.extra_delta_time = (max(params.atmo.heights) -
params.atmo.heights) / 299792458d

3.3 Cubes of phase
Use of cubes of phase. The atmo dictionary must be changed like this:

{atmo,
filename: 'path/file.fits',

https://arxiv.org/abs/1607.07624

wavelengthInNm: 2200.,
rad: 1B

}

Fits file must be an array of [n_pixel,n_pixel,n_iterations], where n_pixel =

params.main.pixel_pupil and n_iterations = params.main.total_time /

params.main.time_step + 1 and if rad is 1B then the array values will be considered
as radians of phase at wavelength equal to wavelengthInNm (otherwise it considers them to
be in nm).
Moreover:

● wind_speed and wind_direction dictionaries are not used when a cube is used.
● set params.control.int_gain to a vector of 0 to measure the cubes without

correction.

4 DEFORMABLE MIRRORS

4.1 DM set up
A set of functions can be used to set up the DM influence functions. They are:

● in PASSATA, lib/compute_kl_ifunc.pro, compute_mixed_ifunc.pro and
compute_zern_ifunc.pro. These can be also used to set up DM influence
functions at the beginning of the simulations without saving them on disk for example
using as DM parameters:
{DM,

type : 'mixed' ; 'kl' or 'zernike' or 'mixed'
nmodes : 1500, ; number of modes
nzern : 3, ; number zernike of modes
npixels : 160, ; must be the same of

main.pixel_pupil
obsratio : 0.16, ; central obscuration relative size
diaratio : 1.00, ; diameter relative ratio w.r.t.

npixels
height : 0 ; DM height [m]

}

● In IdlTools oaa_lib_ao_lib/make_modal_base_from_ifs.pro,
make_modal_base_from_ifs_fft.pro used together with a set of zonal
influence functions and ifunc class.

4.2 DM misalignments
Several misalignment can be add to DMs:

● X/Y shifts: params.dm.shiftXYinPixel, a vector of 2 elements
● rotations: params.dm.rotInDeg
● magnifications: params.dm.magnification, 1 means no magnification

5 WAVEFRONT SENSORS

5.1 WFS types
WFS types available are:

● Shack-Hartmann: classes/sh__define.pro, sh_gpu__define.pro,
sh_shift__define.pro and sh_tilt__define.pro

● Pyramid: classes/modulated_pyramid__define.pro,
modulated_pyramid_gpu__define.pro and pyr_tilt__define.pro

● Ideal (that means a sensor that measures first derivative of incoming phase):
classes/ideal_wfs__define.pro

● Perfect (that means a sensor that measures modal decomposition of incoming
phase): classes/modalanalysis_wfs__define.pro

● Linearized focal-plane technique (LIFT, see Meimon et al. 2010):
classes/lift__define.pro

This one is a slope/mode computation method for a whole pupil WFS. Note that
specific help and additional functions may be required to make it work properly.

Note that each one of this WFS is coupled with a slope computer class
(sh_slopec__define.pro, pyr_slopec__define.pro,
ideal_wfs_slopec__define.pro and modalanalysis_slopec__define.pro).

5.1.1 Valid sub-apertures
Shack-Hartmann (also valid for Ideal): this info is managed in the
class/sh_slopec__define.pro class by the object subapdata
(class/subapdata__define.pro). This object has a set of properties that are used to
define the valid sub-apertures, idxs and map. idxs is a nsubap×npixels array with the pixels of
the detector for each valid sub-aperture (for nsubap valid sub-apertures). map is a nsubap vector
with the indices of the valid sub-apertures. Typically these arrays are computed by the
detect_subaps method of classes/sh__define.pro class and saved on disk in the
subaps directory in the calibration directory tree.

Pyramid: this info is managed in the class/pyr_slopec__define.pro class by the
object pupdata (class/pupdata__define.pro). This object has a property that is used
to define the valid sub-apertures, ind_pup. ind_pup is a 4×nsubap array with the 4 pixels of
the detector (we are considering 4 sub-pupils) for each valid sub-aperture (for nsubap valid
sub-apertures). Typically this array is computed by the function lib/pupil_acquire.pro

and saved on disk in the pupils directory in the calibration directory tree.

5.2 Extended sources
● Shack-Hartmann sensor:

https://doi.org/10.1364/OL.35.003036

○ Sodium elongation: the following three dictionaries are used to introduce the
sodium elongation in the LGS WFS. Note that zlayer.zfocus and
zlayer.theta must be determined off-line to get a zero tip, tilt and focus
signal on the LGS WFS.

{ zlayer,
func_type : 'SIN'
constant_tag : 'na_profile_20080717-06_40_56_x'

; [m] layer heights, tag name of the fits file stored in
params.main.root_dir+’/data/’

zfocus : 92092.6
; [m] focus value used as reference

theta : [-0.00617147, -0.0228771]
; [arcsec] tip/tilt value used as reference
}

{ zprofile,
func_type : 'SIN'
constant_tag : 'na_profile_20080717-06_40_56_y'

; [m] layer intensity, tag name of the fits file stored in
params.main.root_dir+’/data/’
}

{ launcher,
; LGS launcher position

position : [1.25, 5.35, 96.0]
; position [x,y,z] meters (x eq y position) original position:
x=1250mm, y=5350mm, z=96000mm (x/y angle 13.15degree)

sizeArcsec: 0.826
; this launcher dimension gives a total spot size of 1.2"
; square summed with the seeing of 0.87"
(sqrt(1.2^2.-0.87^2.)=0.826499)
}

○ Random jitter of the laser spot: the following three dictionaries are used to
introduce a random tip/tilt residual (after removing the atmospheric tip/tilt
residual) on the LGS WFSs with a standard deviation that is lgsttres.amp [nm]

{tt_modalanalysis, ; modal analysis to remove
atmospheric Tip/Tilt from LGS SHS
type : 'zernike'
nmodes : 2
npixels : 160
obsratio : 0.16
diaratio : 1 ; DM height [m]
}

{tt_DM, ; zernike DM to remove atmospheric
Tip/Tilt from LGS SHS

type : 'zernike'
nmodes : 2
npixels : 160
obsratio : 0.16
diaratio : 1
height : 0

; DM height [m]
}

{lgsttres, ; disturbance to add random Tip/Tilt
on LGS SHS

func_type: 'RANDOM',
amp: [737.,737.], ; total 106 mas RMS on sky -->

sqrt(106.^2./2.)*4.848e-9*8.118/4.*1e9
nmodes: 2,
height: 0,
dm_type: 'zernike',
dm_npixels: 160,
dm_obsratio: 0.16,
PRECISION: 0B,
seed: 1

}

● Pyramid:
2D and 3D extended objects for the PWFS can be used setting up an
extended_source object (PASSATA/classes/extended_source__define.pro)
with get_extended_source of factory class and set it in the PWFS object with the
set_extended_source method. Note that PWFS modulation is disabled with extended
sources. Reference SPIE paper Esposito et al. 2016.

extsource =
factory.get_extended_source(params.extended_object)
wfs.set_extended_source, extsource

Below an example of the parameter set:

{extended_object,
polar_coordinate: [0.0, 0]
height: 90000 ; source altitude in m for

atmosphere propagation (!VALUES.F_INFINITY for cylindrical
propagation, 90000 for sodium layer cone effect)

magnitude : 9
wavelengthInNm: 589
type : 'GAUSS', ; see obj_type in compute2d method

of extended_source object
sampling_type : 'CARTESIAN', ; see sampling_type in compute2d

method of extended_source object
size_obj : 0.56 ; 2D size, for "TOPHAT" type it is

the diameter

https://doi.org/10.1117/12.2234423

multiples_fwhm : 1.0 ; extended object 2D sampling in
multiple of lambda/D (DL FWHM)

show_source: 0B ; if set display the extended
source points

layerHeight: [0] ; sodium layers altitude in m with
respect to focusHeight, a single elements means a 2D source

intensityProfile: [1] ; vector of sodium layers intensity
(total = 1), a single elements means a 2D source

focusHeight: 90000 ; sodium layer focus altitude in m
}

Note that the first 4 keys must be the same as params.wfs_source.

5.3 Chromaticity
● Shack-Hartmann (note this a relatively old feature and now PASSATA could be

updated considering the features illustrated in WFS misalignments section):
params.sh.xytilt vector can be used to introduce a chromatic aberration on the
focal plane while params.sh.xyshift vector can be used to introduce a chromatic
aberration on the pupil plane. They cannot be set together. tiltWavelengthInNm
(vector of waveleghts in nm, for each one a different WFS object will be built),
qe_factor_tilt (vector of relative intensities, sum equal to 1) vectors are also
required. Moreover these parameters:

dm_npixels = 176 ; DM parameters to introduce tip/tilt in
focal plane, same number as in params.main.pixel_pupil

dm_obsratio = 0.16d ; DM parameters to introduce tip/tilt in
focal plane, same obscuration ratio of the pupil

dm_type = 'zernike' ; DM parameters to introduce tip/tilt in
focal plane, always ‘zernike’

nmodes = 2 ; DM parameters to introduce tip/tilt in
focal plane, always 2

height = 0 ; DM parameters to introduce tip/tilt in
focal plane, always 0

are required in case of xytilt, and resize_fact in case of xyshift (if a
resize after the shift is required, it can be used to get shifts of less than 1 pixel).

● Pyramid:
Below we report the pyramid dictionary for a GPI case with 60 sub-apertures on the
diameter, chromaticity on 2 wavelengths (tiltWavelengthInNm) and a chromatic
aberration on focal plane (xyTilt) and on pupil plane (pup_shifts):
{pyramid,

pup_diam: 60. ; Pupil diameter in
subapertures

pup_dist: 72. ; Requested separatoin between
pupil centers, in subapertures

fov : 2.1 ; Requested field-of-view
[arcsec]

fov_errinf : 0.1 ; Maximum error in reducing fov
fov_errsup : 3. ; Maximum error in reducing fov

mod_amp = 3.0 ; Modulation radius (in
lambda/D units)

output_resolution: 140 ; Output sampling [usually
corresponding to CCD pixels]

fft_res = 3.0 ; pyramid focal-plane PSF
sampling in lambda/D units

wavelengthInNm: 750 ; [nm] Pyramid wavelength (in
this case is not used,

; instead tiltWavelengthInNm
vector is used)

tiltWavelengthInNm = [600.,900] ; vector of waveleghts in nm,
for each one a different PWFS object will be build

xyTilt = [[-200,0.],[200,0.]] ; focal plane tip,tilt in nm
RSM, a couple for each PWFS

qe_factor_tilt = [0.5,0.5] ; vector of throughput, one
forr each PWFS, total must be 1

pup_shifts = [[-1.0,0.0],[1.0,0.0]] ; pupil plane shift in
pixels, a couple for each PWFS

func_type = 'SIN' ; do not change this
dm_npixels = 176 ; DM parameters to introduce

tip/tilt in focal plane
dm_obsratio = 0.16d ; '' ''

''
dm_type = 'zernike' ; '' ''

''
nmodes = 2 ; '' ''

''
height = 0 ; '' ''

''
}

5.4 WFS misalignments
● Shack-Hartmann sensor:

○ X/Y shifts: params.sh. xShiftPhInPixel and yShiftPhInPixel

(axShiftPhInPixel and ayShiftPhInPixel that are used to avoid the
automatic procedures to consider them for restoring a calibration that
consider them)

○ rotations: params.sh.rotAnglePhInDeg (arotAnglePhInDeg that is used
to avoid the automatic procedures to consider it for restoring a calibration that
consider it)

● Pyramid:
○ X/Y shifts: params.pyramidpup_shifts, a vector of 2 elements
○ different X/Y shifts for each sub-pupil: params.pyramid.pyr_tlt_coeff,

a matrix of 4 rows and 2 columns. Nominal value for this parameter is:
params.pyramid.pyr_tlt_coeff =

[[1,1],[-1,1],[-1,-1],[1,-1]]. To get a positive X shift of one pixel
the nominal value of the first sub-pupil must be summed to

0.5/param.pyramid.pup_dist as: params.pyramid.pyr_tlt_coeff
=

[[1+0.5/param.pyramid.pup_dist,1],[-1,1],[-1,-1],[1,-1]].
Note that in this case the selection of valid sub-apertures can be refined
considering a few options (see lib/pupil_acquire.pro).

5.5 WFS defects
Pyramid edges and tip defect (0 phase) in lambda/D unit can be introduced with
params.pyramid.pyrEdgeDefLd and params.pyramid.pyrTipDefLd keys.

6 DETECTOR
● automatic update of detector parameters: auto_params_management method of

the ccd class can be used to checks detector size, update a few detector parameters
in function of params.detector.name (using
IdlTools/oaa_lib/ao_lib/calc_detector_noise.pro function and, for
background level, params.detector.sky_bg_norm key)

● Charge diffusion: params.detector.charge_diffusion and
charge_diffusion_fwhm (this value in pixel FWHM) are used to add a gaussian
charge diffusion in the ccd class.

● Pixel gains: params.detector.pixelGains_tag = 'tag_name' can be used
to set a map of pixel gains (stored in params.main.root_dir+’/data/’).
Instead, a vector of 4 elements, params.detector.quadrantsGains, can be
used to set up pixel gains different per quadrant.

● Clocked Induced Charge (CIC) noise: can be set with
params.detector.cic_noise and params.detector.cic_level.

● Charge Transmission Efficiency (CTE) noise: can be set with
params.detector.cte_mat

● output of the detector can be equal to the input intensity if
params.detector.doNotChangeI is set to 1b.

7 SLOPE COMPUTATION
Several options are available for a Shack Hartmann sensor:

● The default slope computation is Center of Gravity (CoG).
● a quad cell mode can be enabled, in case of a SCAO NGS mode →

params.slopec.quadcell_mode = 1B.
● a Weighted Center of Gravity, in case of a SCAO NGS mode →

params.slopec.weightedPixRad = 1, half width half maximum in pixel of the
gaussian weight.

● a Windowing Center of Gravity, in case of a SCAO NGS mode →
params.slopec.weightedPixRad = 1 and params.slopec.windowing =

1B.
● correlation: params.slopec.correlation, params.slopec.corrThr and

params.slopec.corrWindowSidePix. It requires a correlation template
corr_template property of sh_slopec class.

8 CONTROL
Two control types are available, integrator (params.control.type = ‘INT’) and infinite
impulse response filter (params.control.type = ‘IIR’).

● INTEGRATOR: in case of integrator a integrator gain vector is required,
params.control.int_gain, and, optionally, a forgetting factor vector,
params.control.ff, of the same size of the gain vector can be defined to get
leaky integrators (a paper about these integrators is Agapito et al. 2019) instead of
pure integrator.

○ OMG: params.control.opt_dt this value in seconds is used to get a
recurring optimized modal gain vactor (similar but not exactly the same as
Agapito et al. 2021). In this case intcontrol_opt class is selected instead
of intcontrol

● IIR filter: in case of infinite impulse response filter a file saved using the iirfilter

class (save method) is required, params.control.iir_tag = 'tag_name’.
This class can store an arbitrary number of filters (it has been coded to have one
filter for each mode) equal to the property nfilter. Methods like set_num,
set_den, set_zeros, set_poles and set_gain can be used to set the filter
parameters (filter coefficients of filter roots and gain). The case with a single pole and
a gain per filter is equivalent to the integrator described in the previous point.
Note that this kind of filter is typically used to get additional degrees of freedom in the
temporal control that can be useful to reject structure vibrations or deal with particular
features of the input disturbances (a paper about these filters is Agapito et al. 2012).

Then there is an additional control developed to reject vibrations:
● Adaptive vibration cancellation algorithm (Muradore et al. SPIE 2012), example for a

SCAO system and a single vibration:
{avc,

freq: freq, ; vibration frequency
sinusSingleFreq: sinusSingleFreq, ; set it to 1B if vibration

spectrum is narrow, 0B if it is broad
modes: modes, ; index of the mode affected by

the vibration
estTFparams: 0B ; set it to 1B to estimate

closed loop transfer function parameters, to 0B to rely on the
theoretic value based on control parameters
}

https://arxiv.org/abs/1911.05989
https://doi.org/10.1093/mnras/stab2665
https://arxiv.org/abs/1207.3634
https://doi.org/10.1117/12.927198

Pseudo open loop control for MCAO system is code in
classes/maory_polcrev_rtc__define.pro, maory_rtc__define.pro and
maory_rtc_2step__define.pro.

9 VIBRATION AND ABERRATION

params.vibrations is used to add a static or dynamic aberration. Examples of this for a
SCAO simulation (for MCAO multiple vibrations/aberrations can be set up with
params.disturbance1, params.disturbance2, … and for each one of the LGS WFS
paths, params.lgs_disturbance1, params.lgs_disturbance2, ...) are:

● tip/tilt vibrations (but it can be of any mode/modes):
{vibrations,

func_type: 'VIB_PSD’, ; type of function, see
classes/func_generator__define.pro

vib_data: 'MacaoSinfoniVibrations', ; vibration PSD tag name of
the fits file stored in params.main.root_dir+’/vibrations/’

continuous_psd: 1B, ; PSD can be continuous as
in this case of made of a combination of sinusoidal signals

nmodes: 2, ; number of modes starting
from the first one of the selected modal base

height: 0, ; conjugation altitude of
the aberration

influence_function:'VLT_ifunc_160p', ; modal base
PRECISION: 0B,
seed: 1

}

● static aberration:
{vibrations,

func_type :'SIN', ; type of function, see
classes/func_generator__define.pro

constant : [0,0,0,250,0,0,0,0,0,0], ; aberration modal
vector in nm RMS

height : 0., ; conjugation altitude of
the aberration

influence_function : 'VLT_ifunc_160p', ; modal base
nmodes : 10L, ; number of modes starting

from the first one of the selected modal base
verbose : 0B

}

● static aberration restored from disk:
{vibrations,

map_tag: 'tag_name', ; tag name of the fits file stored in
params.main.root_dir+’/data/’

height: 0. ; conjugation altitude of the aberration
}

10 AUTOMATIC TAG NAME SELECTION
Parameters dictionary contains several tag names, typically of valid sub-aperture vector,
slope null vector, interaction matrix, reconstruction matrix, … A set of procedure can be used
to automatically selects them:

● lib/give_me_the_tags_lngs.pro

● lib/give_me_the_tags_mcao.pro

● lib/give_me_the_tags_scao.pro

if ‘auto’ string is used for the tag names.
Note that this is optional and users can always select this name by hand or by its own
functions.

Examples of how to use this can be found in updateParams methods of
cloop/base_scao_loop__define.pro, cloop/base_2wfs_loop__define.pro
and cloop/base_mcao_loop__define.pro.

Note that in cloop/base_mcao_loop__define.pro the approach is different because
reconstruction and projection matrices (here we are using a pseudo-open loop control) are
saved in directories named as timestamp with a recmat.fits file (in case of reconstruction
matrices) and with a parameters dictionary file inside. This dictionary is the one used during
the calibration and it is generally used by the lib/search_mcao_mat.pro function to find
the desired matrix.

11 DATASTORE CLASS
This class is used to collect and save on disk a simulation, but it can also be used to restore
the data and the parameters dictionary with restore (function) method (that uses restore
and restore_tracknum procedure methods) and can be used to list keys, keys and
HasKey methods, return values and times, values and times methods, compute average
values, mean method, make some plots, plot method, ...

12 DICTIONARIES MANAGEMENT
A few functions are available to manage parameters and/or dictionaries, main ones are:

● lib/combine_params.pro

● lib/compare_dict.pro

● lib/duplicate_params.pro

● lib/make_params_permutations.pro

● lib/read_params_file.pro

● lib/search_keys_dict.pro

13 HOW TO RUN A SET OF SIMULATIONS
Sometimes it is useful to run a set of simulations with a single main file where only a few
parameters change: for example to estimate performance with different seeing values.

● The first option is to set up a for cycle in the main file and update the desired
parameters at each step of the simulations.

● The second option is to build a list of parameters dictionary to be used in a for cycle.
The list can be built using the function lib/make_params_permutations.pro.
Example:

; parameters to be explored
params_to_explore = list()
params_to_explore.add,
list('wfs_source','magnitude',[12,15,16,17,18,19,20.])
params_to_explore.add,
list('detector','dt',[2d-3,2d-3,2d-3,2d-3,2d-3,2d-3,3d-3])
params_list = make_params_permutations(params_to_explore,
permutations_matrix=permutations_matrix, /no_permutations)

Here using permutations_matrix array and no_permutations keyword
several options can be set up. For example in the case above star magnitude and
detector integration time are combined one-to-one and a params_list with all the
combinations can be produced removing the no_permutations keyword. This
function is also used in lib/iterate_dictionary.pro. In this case
combine_params function must be used to get the i-th dictionary combining the
original parameters dictionary and the i-th element of params_list.

● The third option requires the use of the expand keyword of
lib/read_params_file.pro function in the parameters file. In this case for each
parameter key to be explored with different values the syntax must be:

time_step: iterate([0.001,0.002,0.005d], 1)

where ther vector collects the values to be explored and the scalar value the “group”.
This “group” can be used to get a one-to-one combination (so no permutations) with
other parameters (for example params.main.time_step and
params.detector.dt). In this case the output of read_params_file is a list of
dictionaries.

14 MODAL ANALYSIS
When the dictionary params.modalanalysis is set in a SCAO simulation (NGS or
LGS+NGS), residual turbulence is decomposed on the selected modal base at each step
and a resMod variable is added to the datastore (this is done by the addModalAnalysis

method of base_loop class).
Procedure lib/do_modal_plot.pro can then be used to plot a figure with curves of
modal turbulence and residual standard deviation (or RMS) starting from the data stored in
the datastore object (store in the procedure call). This figure is known colloquially as
“modal plot”.

A couple of examples of params.modalanalysis:

{modalanalysis,
phase2modes_tag: ‘VLT_ifunc_160p_inv’ ; tag name of the inverse

of the VLT_ifunc_160p modal base
}

{modalanalysis,
type : 'kl' ; KL modal base
nmodes : 1000 ; with 1000 modes
npixels : 160 ; 160x160 pixels
obsratio : 0.16 ; 16% of central obscuration
diaratio : 1 ; diameter is 100% of npixels

}

Note that for a MCAO simulation the same kind of analysis can be done offline, see sec. 16.

15 PSF VISUALIZATION
An example of how a PSF can be visualized is reported below. It uses functions and
procedures from IdlTools library. A few notes:

● psf is the PSF array, it can also be a cube.
● psf_resolution is the padding coefficient used in the FFT to compute the PSF.
● scale is an output and it is the pixel scale of the PSF.
● profile is an output and it is a list of structures (because psf can be a cube of

PSFs) with off_axis_angle, prof_res and ee.
● FWHM is the FWHM computed from the profile.

maxval_psf = max(psf)
minval_psf = maxval_psf*1e-4 ; this is used to set up the dynamic range in
the figure
range_psf = 1 ; this is used to set up the portion of FoV shown in the figure

loadct, 3 ; red color scale
nwin = 1 ; window number
xsize = 800 ; window size
ysize = 600

psf_show, psf, wavelengthInM, diameterInM, $
/noshift, /log, /as, /sh, /inv, /noproplot, $
psf_resolution=psf_resolution, range_psf=range_psf, $

minval_psf=minval_psf, maxval_psf=maxval_psf, $
nwin=nwin, xsize=xsize, ysize=ysize, $
profile=profile, scale=scale

maxProfPsf = max(profile[0].prof_res)

window, nwin+1, xsize=xsize, ysize=ysize
plot_io, profile[0].off_axis_angle, profile[0].prof_res/maxProfPsf,
xra=[0,range_psf], yra=[1e-6,1], $

xtit='!17Off-axis angle !4[!17arcsec!4]!17', ytit='!17Normalized
profile', ytickformat='exponent', $

title='!17wavelength: '+strtrim(wavelengthInM*1e9,2)+'nm', thick=2

window, nwin+2, xsize=xsize, ysize=ysize
plot, profile[0].off_axis_angle, profile[0].ee, xst=17, xra=[0,range_psf], $

xtit='!17Off-axis angle !4[!17arcsec!4]!17', ytit='!17Encircled
Energy', $

title='!17wavelength: '+strtrim(wavelengthInM*1e9,2)+'nm', thick=2

FWHM = calc_fwhm_from_prof(profile[0].prof_res, profile[0].off_axis_angle)

16 SIMULATION REPRODUCIBILITY
PASSATA simulation can be reproduced to make off-line PSF computation, modal
decomposition of residual phase and residual phase cube saves. There are a set of
functions/procedures/classes to do so. They are:

● lib/scao_data_analysis.pro (and analyse_scao_saved_data.pro and
analyse_lgs_saved_data.pro) that can be used to compute PSF on the line of
sight of the NGS starting from a saved simulation or a list of saved simulations.

● lib/collect_offaxis_data.pro (and compute_off_axis_cube.pro,
compute_off_axis_init.pro, compute_off_axis_modal_analysis.pro,
compute_off_axis_psf.pro and compute_off_axis_resphase.pro) that
can be used to compute PSF, residual cubes or modal decomposition of residual
phase in any direction of the FoV (defined by params.atmo.mcao_fov).

So, in principle, performance of the simulation can be estimated off-line. This is useful to
speed up the simulation, reduce its memory requirements and change wavelengths,
coordinates, … at a later time.

