
PASSATA introduction
Guido Agapito* and Alfio Puglisi

*guido.agapito@inaf.it
INAF Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, Firenze, Italy

CONTENTS

1 Introduction 2

2 PASSATA objects 2
2.1 Processing objects 2

3 Setting up data transfer 3

4 Loop control 4

5 Calibration 4

6 Time representation 4

7 Data storing 4

8 Factory and Calibration Manager 4
8.1 Factory 5

8.1.1 Example of get_ method for the atmo_evolution processing object 5
8.2 Calibration manager 6

8.2.1 Example of sub-directories dictionary 6
8.2.2 Example of Read/Write methods 6

9 Base objects 7

10 Basic simulation scheme 8

1 Introduction

Here we report an introduction to PASSATA (Agapito et al. 2016). PASSATA is based on
object oriented programming and as a general introduction please refer to the IDL
Object-Oriented Programming, to IDL_Object class and to other classes like
DICTIONARY, HASH, LIST, ORDEREDHASH, ...

2 PASSATA objects

 Most objects belong to one of two main categories: data objects and processing objects.
Data objects hold static data used as input, output or intermediate data for the simulation
(i.e. a ccd pixel frame or a phase screen). Processing objects perform calculations, and pass
data objects around to communicate with each other. A few more specialized objects help in
retrieving calibration data and control simulation timing.
Data objects
All simulation data is stored using data objects. The only special feature of data objects is
that, in addition to holding their data, they also store the simulated time at which they were
generated or updated. To do so, the routine that generates or updates the object must
update the generation_time property passing the current simulation time. Every data
object has a time() function method that returns the last set time. Routines that use the
object as input can thus judge whether the data is current, or how much time has passed
since its generation. Basic objects are provided for simple scalar or array values, lists and
dictionaries. Specialized data objects must derive from the base_data_obj class.
Specialized objects may provide functions to manipulate their data like sum, subtraction,
wavelength-based rescaling where applicable, etc.

2.1 Processing objects

All calculations are done in processing objects. Each of these objects have several features:

https://arxiv.org/abs/1607.07624

● Data inputs and outputs are implemented with data objects. Each processing object
defines one or more outputs, and receives object references for input data.

● Processing is done in a procedure with the conventional name trigger. This
procedure has a single argument, the simulated time t, and will be called once for
each increment of the simulated time.

● Objects are configured using parameters, either from a configuration file or set in
simulation code, as detailed below.

Output data is represented with a data object allocated in the processing object's __define
structure. The processing object initializes the output data object as soon as it has enough
information to do so, fills it with new data and timestamp in the trigger procedure, and
defines a function to return a reference to it.
Input data is not stored in the processing object. Since each input will be an output of some
other object, the processing object will only receive a reference to it.
Processing of data is performed at discrete time intervals. At each time interval, the object's
trigger procedure is called, with a single parameter t, which contains the currently
simulated time. The object can act on the trigger, filling its data output objects, or can choose
to do nothing if not enough time has passed (i.e. a processing object that produces output
only once per second will do nothing until the t parameter has incremented by at least one
second since the last time an output was generated). Reading of data inputs is always
allowed, and their time() function can be used to check whether the data has been
updated or not.
Configuration is done using parameters. Parameters are grouped into structures or
dictionaries, each structure holding one or more parameters for a single object. Each
parameter corresponds to a property and an entry in the configuration file. For example, an
object with a parameter called "integration time" will implement a property called
"integration_time" and the configuration structure will accept a definition like "integration
time: 1.0". Usually the parameter will correspond to a single variable in the object __define
structure.
The base object processing class implements an apply_params procedure that is
automatically called after object creation. This procedure receives a structure or dictionary
containing the object's parameters, and will execute a series of set_ calls to set their values.
Parameters are conventionally separated into static and runtime sets: the static set holds
parameters that are rarely changed (i.e. the primary mirror diameter). The runtime sets those
that are likely to change at each simulation run (i.e. the source magnitude or seeing). Each
set is written into its own file and can be loaded when necessary. Note that a set does not
need to specify all object parameters: if a parameter is missing, the relevant set_* procedure
will not be called, and the parameter will retain its previous value, or the default value if it
was never set.

3 Setting up data transfer
Use properties instead of set/get.
Once all processing objects have been created and parameterized, the data objects needed
for data exchange have already been created inside the processing objects (see the
definition of output data above). The remaining task is to connect each input data with the
corresponding data output object.

4 Loop control
The loop_control object coordinates the simulation, incrementing the simulated time and
calling each object trigger procedure at each increment (run method). Each processing
object must be added to the loop control list (with the add method), and they will be triggered
in that order. The simulation will stop when the simulated time has reached an end point, or
when a stop condition is satisfied (i.e. a certain kind of data is produced or is equal to a
certain value).

5 Calibration
Generation of calibration data can be implemented as a partial loop: to generate for example
a slope offset frame, the relevant processing objects are created and connected as in a real
simulation, and the loop does not start until the desired data has been produced. Any special
configuration can be done with a runtime parameter file as in any other simulation run.

6 Time representation
In order to avoid rounding errors, time is represented with an integer value with 64 bits (IDL
type long64). Time resolution is by default one nanosecond, and can be optionally changed
when setting up the simulation. With the default resolution, the long64 type allows up to
9x10^9 seconds of simulated time (about three years). Note that all objects must agree on
the time resolution, so changing the resolution after object creation is not allowed. All data
and processing objects have a _time_resolution member and functions to convert from/to
seconds.

7 Data storing
Use the datastorage class to store data during a simulation, save them to disk and
restore them from disk. Then methods values, times, mean, stddev, variance and
plot can be used to manage the data. Other useful methods are keys and HasKey (see
IDL help of dictionary class).

8 Factory and Calibration Manager
There are a couple of objects that help the user to set up and manage processing and data
objects: they are factory and calib_manager.

8.1 Factory

factory is an object which has one method to build each object of the library. All these
method names have the same prefix, get_, and a suffix that is the name of the class. The
method needs one or more dictionaries of parameters and returns the object. If the
parameters of the dictionary refer to data saved on disk the factory uses the calibration
manager object to restore the data.

8.1.1 Example of get_ method for the atmo_evolution processing object

;+
; Builds an `atmo_evolution` processing object.
;
; :params:
; params: in, required, type=dictionary or struct
; dictionary or struct of parameters
; source_list: in, required, type=list
; list of `source` objects
;
; :returns:
; a new `atmo_evolution` processing object
;-

function factory::get_atmo_evolution, params, source_list

; checks the parameters and convert it to a dictionary if needed
params = self.ensure_dictionary(params)

; extracts some parameters from the main dictionary
pixel_pup = self._main.pixel_pupil

pixel_pitch = self._main.pixel_pitch
precision = self._main.precision

; removes some parameters from the dictionary (some have default values if they are not
defined)
L0 = params.remove('L0')
wavelengthInNm = params.remove('wavelengthInNm')
heights = params.remove('heights')
Cn2 = params.remove('Cn2')
pixel_phasescreens = self.extract(params, 'pixel_phasescreens', default=!NULL)
seed = self.extract(params, 'seed', default=1)

; extracts the directory name from the calibration manager
directory = self._cm.root_subdir('phasescreen')

; makes the object
atmo_evolution = obj_new('atmo_evolution', L0, wavelengthInNm, pixel_pitch, heights, Cn2, $

pixel_pup, directory, source_list, $
pixel_phasescreens = pixel_phasescreens, $
precision=precision, seed=seed)

; applies other parameters, not previously extracted/removed, to the new object
self.apply_global_params, atmo_evolution
atmo_evolution.apply_properties, params

; returns the new object
return, atmo_evolution
end

8.2 Calibration manager
calib_manager object manages disk I/O for calibration data. It uses a directory tree to
distinguish different data, and read/read/restore methods of the data objects.

8.2.1 Example of sub-directories dictionary

self._subdirs = dictionary({ $
phasescreen: 'phasescreens/', $; phase-screens
slopenull : 'slopenulls/', $; reference slope vector
pupils : 'pupils/', $; pyramid WFS pupil
subaps : 'subaps/', $; SH WFS sub-apertures index
rec : 'rec/', $; reconstruction matrix
im : 'im/', $; interaction matrix
ifunc : 'ifunc/', $; influence functions matrix (modal or zonal)
m2c : 'm2c/', $; modes-to-commands matrix
filter : 'filter/', $; IIR filters
pupilstop : 'pupilstop/', $; pupil mask
vibrations : 'vibrations/' $; vibrations PSD
})

8.2.2 Example of Read/Write methods

pro calib_manager::write_im, tag, intmat

; produces the filename with the complete path

filename = self.filename('im', tag, /makedirs)
intmat.tag = tag

; uses save method of the data object
intmat.save, filename

end
function calib_manager::read_im, tag

; produces the filename with the complete path
filename = self.filename('im', tag)

; returns !NULL if the file does not exist
if not file_test(filename) then return, !NULL

; uses restore method of the data object
return, intmat.restore(filename)

end

9 Base objects
There are some base objects in the libraries which can/must be inherited by other object to
implement some general functionalities.

● base_data_obj: The only purpose of this class is to inherit from both
base_time_obj and IDL_Object, so that data classes do not need to inherit from
then, but just from this one.

● base_dict: Base data object for dictionaries which inherits from base_time_obj

and dictionary.
● base_gpu_value: Basic data object in GPU memory. Use this object to store

simple arrays in GPU memory.
● base_list: Base data object for lists which inherits from base_time_obj and list.
● base_parameter_obj: Base parameter object with apply_properties method.
● base_processing_obj: Base class for processing objects. A processing object is

the basic building block of a simulation. Each processing object defines a trigger

procedure that is called at regular intervals by the loop_control main object.
● base_time_obj: Do not use this class directly. Derive from base_data_obj or

base_processing_obj. Class for objects that need to keep track of time
generation or resolution (typically both processing and data objects). Needs to be
inherited together with IDL_Object in order to work

● base_value: Basic data object. Use this object to store simple scalars or arrays
without further qualifications.

10 Basic simulation scheme

A simulation is made of a list of processing objects connected together by data objects. The
loop control object coordinates the simulation, and the data store object collects the data
from the data objects.

