The Atmosphere above the Antarctic Plateau

Outline

- Basic meteorology
- Why the Antarctic Plateau?
- Method
- Results near the surface
- General circulation of the atmosphere
- Wind speed at higher altitudes
- Conclusions

Good Weather (?)

From meteorological point of view:
 Boring weather!

- Clear skies
- Cold and dry air
- Weak winds
- Stable stratification

Potential Temperature

- The temperature an air parcel would have if it was brought down from its initial state to a standard pressure, usually 1000 hPa
- Presuming an adiabatic process and dry air
 - Dry adiabatic lapse rate = 9.8°C/km

$$\theta = T\left(\frac{p_0}{p}\right)^{\kappa}$$

- Thermal stability
 - Vertical motion is encouraged unstable
 - Vertical motion is suppressed stable

Stratification

- The stability also depends on the winds
- Wind shear causes turbulence

The Richardson number depends on both

$$Ri = \frac{g}{\theta} \frac{\partial \theta}{\partial z}^2}{\left(\frac{\partial v}{\partial z}\right)^2}$$

Stratification

- Critical value, Ri = 0.25
- * Ri < 0.25 => unstable stratification
- Ri ≈ 0.25 => neutral conditions
- * Ri > 0.25 => stable conditions

Why is this important?

- Ordinary turbulence is favoured by large wind shear and unstable thermal stratification
- Optical turbulence (OT) describes the fluctuations of the index of refraction of the atmosphere
- Where there is 'normal' turbulence one can expect OT, but...
- ...optimal condition for large OT is large wind shear and a STABLE thermal stratification.

Why the Antarctic Plateau?

- Stable atmosphere
- Inversion close to the surface most of the time
- Optical turbulence is concentrated in a narrow surface layer
- No jet stream above the Plateau
- Surface winds have a large directional constancy

The Antarctic Plateau

- Three most interesting sites:
 - South Pole
 - Dome C
 - Dome A
- Measurements from the South Pole and Dome C
- From Dome A only model simulations

Results from the South Pole

- Strong OT in a 200 m thick surface layer
- Average seeing 1.73"
- Average seeing above 300 m 0.37"

(Travouillon et al. 2003)

Results from Dome C

- The surface layer has a thickness of 36±10 m (Agabi et al. 2006)
- Measured seeing 0.27", median seeing above 30 m (Lawrence et al. 2004)

Dome A even better?

- Highest summit of the continent and has an even thinner surface layer
- The surface winds closely follow the topography
- The general circulation implies surface winds directed from the centre of the continent towards the coast
- Local effects imply a similar circulation

Dome A even better?

- The surface inversion causes a horizontal temperature gradient => thermal wind
- No inversion winds at the Domes!

Method

- Data extracted from the GCM of the ECMWF (General Circulation Model of the European Centre for Medium-Range Weather Forecasts)
- Every 6h the model gives an analysis of the present state of the atmosphere globally and several forecasts.
- Using the analysis-data to compare Dome A,
 Dome C and the South Pole
- Particularly the first 150 m

Method

- Every month in 2005, at 00UTC, calculate the median of several meteorological parameters
 - Potential temperature
 - Wind speed
 - The gradients of these
 - Richardson number

Reliability of the Analyses

- GCM describes the circulation of the entire planet
- Horizontal resolution 0.5° x 0.5°
- Orography is smoothed
- Largest effect near the surface
- Analyses compared with radiosoundings

July 2006

Interpolation step 100 m

Interpolation step 10 m

Potential Temperature

- During the dark period of the year, due to radiative cooling, the ice surface is colder than the atmosphere above
- Temperature inversion near the surface
- If the temperature increases as the height increases the stratification is thermally stable

Wind Speed

- Surface winds are expected to be weaker above the domes
- Inversion winds should be absent there
- Surface winds will then be more similar to the geostrophic wind

Wind Speed

- No distinct difference in the strength of the wind between the three sites
- The gradient of the wind speed at the lowest level is largest for Dome A in all months

Richardson Number

- Ri > 0.25 => the stratification is stable
- During winter all median values in the first 150 m are stable
- During the summer months the stratification is less stable

General Circulation

- The sun heats the atmosphere
- Most heating occurs at the equator
- Warmer air rises
- Colder air sinks

General Circulation

- The Earth rotates
 - Coriolis force
- Three cells in each hemisphere
- Pattern changes with season
- Moves south of the equator during the northern hemisphere's winter.

Polar High

- At the poles the cold air sinks
- This creates a semi-permanent high pressure near the geographic south pole.
- At high levels this creates a circulation pattern known as the Polar Vortex
- Vertical extent: the middle troposphere (~4 km)
 to the middle of the stratosphere

Wind Speed up to 25 km

- No jet stream is visible
- Vsually the jet stream
 is defined as where the
 wind speed exceeds
 30 m/s, at the height
 300 hPa (≈10 km)

Geissler & Masciadri 2006

Conclusions

- The potential temperature and the Richardson number indicate that, nearest the ground, Dome A is more stable
- The wind speed of the analyses tells nothing of the difference in wind speed near the surface
- At altitudes it is smallest for the South Pole and largest for Dome C

Conclusions

- The ECMWF analyses are smoothed out and cannot accurately describe the surface layer
- Conclusions derived from these data should be taken with caution
- Measurements are needed!
- Use a mesoscale model (Méso-NH) that should be able to describe the surface in greater detail

