From P45 to LBT672 The Adaptive Secondary is arriving...

(Marco Xompero, Daniela Zanotti)

What is AO?

All AO systems work by determining the shape of the distorted wavefront, and using an "adaptive" optical element -- usually a deformable mirror -- to restore the uniform wavefront by applying an opposite cancelling distortion.

The AdSec@LBT

Each AdSec: 672 actuators 911mm diam.

11/10/2007

The AdSec@LBT

INAF-Osservatorio Astrofisico di Arcetri (Italy): Conceptual design. Optical and electromechanical tests, calibration and diagnostic software development.

ADS (Italy): mechanical engineering, mechanical drawings, production and assembly

Microgate (Italy): electronics development and production. DSP software development.

Mirror Lab-Steward Observatory (USA): Optical components production (aspheric shells and reference plates)

2x8.4m mirrors

ADS

MICROS GATE

ROR LABORATORY

LBT672 in detail

Hexapod Interface flange and structural support 3 cooled electronics boxes Fixed hexapod Cold-plate and actuator support Astatic levers 50mm thick Zerodur reference-plate .6mm thick deformable Zerodur shell

11/10/2007

Have a look to the hardware

911 mm

11/10/2007

Fellow Days 2008

6/22

Have a look to the hardware

11/10/2007

Fellow Days 2008

672 acts

Have a look to the hardware

Actuators and Sensor

Noise # 4,5 nm rms

Control Theory

Feed-forward matrix $\{\Delta f\}_i = [K] \{\Delta p\}_i$

measured feed-forward matrix

local stiffness: diagonal of the feedforward matrix

[N/um]

Feed-forward matrix

TS1

(LBT672 Technical shell, 585 acts)

measured feed-forward matrix

local stiffness: diagonal of the feedforward matrix

11/10/2007

Fellow Days 2008

12/22

Mode Transfer Function

P45

TS1 (LBT Technical Shell)

Better behavior of cross-talk in the LBT672a unit: The LBT672a amplitude tends to decrease, while the P45 amplitude increases

Step Response

Step Response

Goal of Optical Loop is 1KHz \longrightarrow LBT672 Settling Time < 1 msec P45 @68µm

Step Response

TS1

Settling time @60µm < 1msec</th>Maximum Overshoot2.8%Proportional gain0,14N/µmDerivative gain40Ns/m

Final Tests: Cold Test

Cold Test: Results

11/10/2007

Optical test tower (1)

11/10/2007

Optical test tower (3) (WFS Group)

Optical test tower (3) (WFS Group)

Optical test tower (3) (WFS Group)

11/10/2007

Optical test tower(4)

Ready to silver the TS3 for the final optical test with the LBT672 unit

- Tested the Silvering process (Oxide-Reduction Process with spraygun)
- Silvering support ready.
- Test with a piece of glass with the same dimensions of the secondary mirror and the slumped shell.

Optical test tower(4)

Optical test tower(4)

- Ready to silv
- Tested th spraygun)
- Silvering
- Test with secondary

Conclusions

- The Future steps:
- •Final characterization of the Scientific Thin Shell(TS3);
- •From Nov. 07 to Jan. 08 LBT672a Optical Test;
- •From Jan.08 to July 08 AO System test in solar tower with LBT672 and WFS unit.
- •August 08 Shipment of all the system to Arizona

Feed-forward Matrix - Zonal

11/10/2007