Past: The LBT Design ooo oo	Transition: from LBT to Adaptive M2	Present 000	Future oo	Summary

Simulations in Astroengineering: from FEA to Multiphysics PDE's

How Astronomers and Engineers interact

C. Del Vecchio¹

¹National Institute for Astrophysics Arcetri Astrophysical Observatory Florence Italy

AdOpt Informal Seminar, April 13 2007

Del Vecchio

National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Past: The LBT Design	Transition: from LBT to Adaptive M2	Present 000	Future oo	Summary

Outline

1 Past: The LBT Design

- A "Non-Classic" Engineering: Design Criteria
- The Finite Element Method
- 2 Transition: from LBT to Adaptive M2
 - From FEA to Multiphysics PDE's
 - PDE Approach

3 Present

Single-Physics

4 Future

Multi-Physics

Del Vecchio

National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Past: The LBT Design ●oo ○○	Transition: from LBT to Adaptive M2	Present 000	Future oo	Summary
A "Non-Classic" Engineering: Design Criteria				

Outline

1 Past: The LBT Design

- A "Non-Classic" Engineering: Design Criteria
- The Finite Element Method
- 2 Transition: from LBT to Adaptive M2
 a From FEA to Multiphysics PDE's
 b PDE Approach

3 Present

- Single-Physics
- 4 Future
 - Multi-Physics

Del Vecchio

National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Past: The LBT Design ○●○ ○○	Transition: from LBT to Adaptive M2	Present 000	Future oo	Summary
A "Non-Classic" Engineering: Design Criteria				

How the Specs are Fulfilled. The Translation of the Error Budget for the Structural Engineer.

- As the most relevant disturbances are dynamic (wind and drivers), the input parameter is the global stiffness.
- Such a stiffness is evaluated by the *locked rotor frequency* and the *free rotor frequency*, respectively.
- The measure of such a stiffness is set by the specifications at 8 Hz.
- If such a stiffness is reached, ...
 - leave static response as a consequence;
 - let it work as the basis for the (high frequency, low amplitude) active optics, and, possibly, adaptive (very high frequency, very low amplitude) optics.

Past: The LBT Design	Transition: from LBT to Adaptive M2	Present	Future	Summary
000 00	0000 00			
A "Non-Classic" Engineering: De	sign Criteria			

Discretization: from CAD to FEM. Each Sub-Component must have a known elastic response.

National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Del Vecchio

Past: The LBT Design ○○○ ●○	Transition: from LBT to Adaptive M2	Present 000	Future oo	Summary
The Finite Element Method				

Outline

1 Past: The LBT Design

A "Non-Classic" Engineering: Design Criteria

The Finite Element Method

2 Transition: from LBT to Adaptive M2
 a From FEA to Multiphysics PDE's
 b PDE Approach

3 Present

- Single-Physics
- 4 Future
 - Multi-Physics

Del Vecchio

National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Past: The LBT Design ○○○ ○●	Transition: from LBT to Adaptive M2	Present 000	Future oo	Summary
The Finite Element Method				

Splitting a complex Structure in "Simple" Elements. Each Element is fully described. All Element Stiffness Sub-Matrices are Assembled.

Del Vecchio

National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Past: The LBT Design

Transition: from LBT to Adaptive M2

Present

uture

Summary

Adaptive Optics on board the Telescope. System Overview.

Del Vecchio

National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Past: The LBT Design ooo oo	Transition: from LBT to Adaptive M2 ●○○○	Present 000	Future oo	Summary
From FEA to Multiphysics PDE's				

Outline

Past: The LBT Design A "Non-Classic" Engineering: Design Criteria The Finite Element Method

Transition: from LBT to Adaptive M2 From FEA to Multiphysics PDE's PDE Approach

3 Present

Single-Physics

4 Future

Multi-Physics

Del Vecchio

National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Past: The LBT Design ০০০ ০০	Transition: from LBT to Adaptive M2 ○●○○	Present 000	Future oo	Summary
From FEA to Multiphysics PDE's				

Theory Background. Strain-Displacement Relationship: the Tensor *e*.

$$\epsilon_{x} = \frac{\partial u}{\partial x}$$

$$\epsilon_{y} = \frac{\partial v}{\partial y}$$

$$\epsilon_{z} = \frac{\partial w}{\partial z}$$

$$\epsilon_{xy} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$$

$$\epsilon_{yz} = \frac{1}{2} \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right)$$

$$\epsilon_{xz} = \frac{1}{2} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right)$$

National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Del Vecchio

Past: The LBT Design	Transition: from LBT to Adaptive M2 ○○●○	Present 000	Future oo	Summary
From FEA to Multiphysics PDE's				

Theory Background. Stress-Strain Relationship.

$$\sigma = \begin{bmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & \sigma_y & \tau_{yz} \\ \tau_{xz} & \tau_{yz} & \sigma_z \end{bmatrix} \sigma = D\epsilon$$
$$D^{-1} = \frac{1}{E} \begin{bmatrix} 1 & -\nu & -\nu & 0 & 0 & 0 \\ -\nu & 1 & -\nu & 0 & 0 & 0 \\ -\nu & -\nu & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2(1+\nu) & 0 & 0 \\ 0 & 0 & 0 & 0 & 2(1+\nu) & 0 \\ 0 & 0 & 0 & 0 & 0 & 2(1+\nu) \end{bmatrix}$$

D is the elasticity matrix, D^{-1} , the inverse of D, is the flexibility or compliance matrix. The above definition is for an isotropic material.

National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

・ロト ・回ト ・ヨト ・ヨト

Del Vecchio

Past: The LBT Design ooo oo	Transition: from LBT to Adaptive M2 ○○○	Present 000	Future oo	Summary
From FEA to Multiphysics PDE's				
Theory Backg	round.			

The equilibrium equations expressed in the stresses for 3D are

$$\begin{split} F_{X} &= -\frac{\partial \sigma_{X}}{\partial x} - \frac{\partial \tau_{Xy}}{\partial y} - \frac{\partial \tau_{xz}}{\partial z} \\ F_{y} &= -\frac{\partial \tau_{xy}}{\partial x} - \frac{\partial \sigma_{y}}{\partial y} - \frac{\partial \tau_{yz}}{\partial z} \quad \rightsquigarrow \quad -\vec{\nabla}\sigma = \vec{F} \quad (\vec{F} \text{ denotes the volume forces}) \\ F_{z} &= -\frac{\partial \tau_{xz}}{\partial x} - \frac{\partial \tau_{yz}}{\partial y} - \frac{\partial \sigma_{z}}{\partial z} \end{split}$$

Substitution of the stress-strain relationship and the strain-displacement relationship into the static equilibrium equation produces Navier's equation of equilibrium expressed in the displacements. For static conditions, Navier's equation reads

$$-ec{
abla}\cdot(cec{
abla}ec{u})=ec{
abla}$$

Del Vecchio

National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Past: The LBT Design	Transition: from LBT to Adaptive M2 ○○○○ ●○	Present 000	Future oo	Summary
PDE Approach				

Outline

Past: The LBT Design A "Non-Classic" Engineering: Design Criteria The Finite Element Method

Transition: from LBT to Adaptive M2 From FEA to Multiphysics PDE's

PDE Approach

3 Present

Single-Physics

4 Future

Multi-Physics

Del Vecchio

National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Past: The LBT Design	Transition: from LBT to Adaptive M2	Present	Future	Summary
000 00	0000 00			
PDE Approach				

> HT, SM, EM, and NS PDE's are Built-in but ... The User can Write his/her own Equations.

- "Classical" FE Elements/Nodes are Available but ... Every Model is Defined through Domains/Boundaries/Edges.
- "Classical" FE Methods are Available but ... Every Kind of Load/Restraint can be supplied.
- A Built-in Drawer Exists but ... CAD Models are importable.

Past: The LBT Design ooo oo	Transition: from LBT to Adaptive M2 ○○○○ ○●	Present 000	Future oo	Summary
PDE Approach				

HT, SM, EM, and NS PDE's are Built-in but ... The User can Write his/her own Equations.

- "Classical" FE Elements/Nodes are Available but ... Every Model is Defined through Domains/Boundaries/Edges.
- "Classical" FE Methods are Available but ... Every Kind of Load/Restraint can be supplied.
- A Built-in Drawer Exists but ... CAD Models are importable.

Past: The LBT Design	Transition: from LBT to Adaptive M2	Present 000	Future oo	Summary
00 PDE Approach	0●			

> HT, SM, EM, and NS PDE's are Built-in but ... The User can Write his/her own Equations.

 "Classical" FE Elements/Nodes are Available but ... Every Model is Defined through Domains/Boundaries/Edges.

 "Classical" FE Methods are Available but ... Every Kind of Load/Restraint can be supplied.

A Built-in Drawer Exists but ... CAD Models are importable.

Del Vecchio

National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Past: The LBT Design	Transition: from LBT to Adaptive M2	Present	Future	Summary
000 00	0000 00	000	00	
PDE Approach				

- HT, SM, EM, and NS PDE's are Built-in but ... The User can Write his/her own Equations.
- "Classical" FE Elements/Nodes are Available but ... Every Model is Defined through Domains/Boundaries/Edges.
- "Classical" FE Methods are Available but ... Every Kind of Load/Restraint can be supplied.
- A Built-in Drawer Exists but ... CAD Models are importable.

Past: The LBT Design	Transition: from LBT to Adaptive M2	Present	Future	Summary
000 00	0000 00	000	00	
PDE Approach				

- HT, SM, EM, and NS PDE's are Built-in but ... The User can Write his/her own Equations.
- "Classical" FE Elements/Nodes are Available but ... Every Model is Defined through Domains/Boundaries/Edges.
- "Classical" FE Methods are Available but ... Every Kind of Load/Restraint can be supplied.
- A Built-in Drawer Exists but ... CAD Models are importable.

Past: The LBT Design	Transition: from LBT to Adaptive M2	Present	Future	Summary
000 00	0000 00	000	00	
PDE Approach				

- HT, SM, EM, and NS PDE's are Built-in but ... The User can Write his/her own Equations.
- "Classical" FE Elements/Nodes are Available but ... Every Model is Defined through Domains/Boundaries/Edges.
- "Classical" FE Methods are Available but ... Every Kind of Load/Restraint can be supplied.
- A Built-in Drawer Exists but ... CAD Models are importable.

Past: The LBT Design	Transition: from LBT to Adaptive M2	Present	Future	Summary
000 00	0000 00	000	00	
PDE Approach				

- HT, SM, EM, and NS PDE's are Built-in but ... The User can Write his/her own Equations.
- "Classical" FE Elements/Nodes are Available but ... Every Model is Defined through Domains/Boundaries/Edges.
- "Classical" FE Methods are Available but ... Every Kind of Load/Restraint can be supplied.
- A Built-in Drawer Exists but ... CAD Models are importable.

Past: The LBT Design	Transition: from LBT to Adaptive M2	Present	Future	Summary
000 00	0000 00	000	00	
PDE Approach				

- HT, SM, EM, and NS PDE's are Built-in but ... The User can Write his/her own Equations.
- "Classical" FE Elements/Nodes are Available but ... Every Model is Defined through Domains/Boundaries/Edges.
- "Classical" FE Methods are Available but ... Every Kind of Load/Restraint can be supplied.
- A Built-in Drawer Exists but ... CAD Models are importable.

Past: The LBT Design ooo oo	Transition: from LBT to Adaptive M2	Present ●oo	Future oo	Summary
Single-Physics				

Outline

Past: The LBT Design A "Non-Classic" Engineering: Design Criteria The Finite Element Method

2 Transition: from LBT to Adaptive M2
 a From FEA to Multiphysics PDE's
 b PDE Approach

3 Present

Single-Physics

■ Future ■ *Multi*-Physics

Del Vecchio

National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Past: The LBT Design ০০০ ০০	Transition: from LBT to Adaptive M2	Present o●o	Future oo	Summary
Single-Physics				

Dynamic:

MMT336 Adaptive Secondary Mirror eigenmodes/eigenvectors

 LBT672 Adaptive Secondary Mirror eigenmodes/eigenvectors

Static

(Reduced) MMT336 Stiffness Matrix (Influence functions)
 (Reduced) LBT672 Stiffens Matrix (Influence functions)

- Dust Grain in the LBT672 DM/RF Gap
- Silvering Load on the LBT672 DN
- Wind Load on the LBT672 DM

Del Vecchio

National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

• • • • • • • • • • • • •

Past: The LBT Design ooo oo	Transition: from LBT to Adaptive M2 0000 00	Present o●o	Future oo	Summary
Single-Physics				

Dynamic:

- MMT336 Adaptive Secondary Mirror eigenmodes/eigenvectors
- LBT672 Adaptive Secondary Mirror eigenmodes/eigenvectors

Static

- (Reduced) MMT336 Stiffness Matrix (Influence functions)
- (Reduced) LBT672 Stiffens Matrix (Influence functions)
- Dust Grain in the LBT672 DM/RF Gap
- Silvering Load on the LBT672 DM
- Wind Load on the LBT672 DM

Past: The LBT Design ooo oo	Transition: from LBT to Adaptive M2	Present o●o	Future oo	Summary
Single-Physics				
	unter e			

Dynamic:

- MMT336 Adaptive Secondary Mirror eigenmodes/eigenvectors
- LBT672 Adaptive Secondary Mirror eigenmodes/eigenvectors

Static

- (Reduced) MMT336 Stiffness Matrix (Influence functions)
- (Reduced) LBT672 Stiffens Matrix (Influence functions)
- Dust Grain in the LBT672 DM/RF Gap
- Silvering Load on the LBT672 DM
- Wind Load on the LBT672 DM

Past: The LBT Design ooo oo	Transition: from LBT to Adaptive M2 0000 00	Present o●o	Future oo	Summary
Single-Physics				
Opto Maaba				

CODE-INICCIANICS. Running the FEM/PDE Secondary Units Models.

Dynamic:

- MMT336 Adaptive Secondary Mirror eigenmodes/eigenvectors
- LBT672 Adaptive Secondary Mirror eigenmodes/eigenvectors
- Static
 - (Reduced) MMT336 Stiffness Matrix (Influence functions)
 - (Reduced) LBT672 Stiffens Matrix (Influence functions)
 - Dust Grain in the LBT672 DM/RF Gap
 - Silvering Load on the LBT672 DM
 - Wind Load on the LBT672 DM

Past: The LBT Design ooo oo	Transition: from LBT to Adaptive M2	Present o●o	Future oo	Summary
Single-Physics				
Opto Macha				

Dynamic:

- MMT336 Adaptive Secondary Mirror eigenmodes/eigenvectors
- LBT672 Adaptive Secondary Mirror eigenmodes/eigenvectors
- Static
 - (Reduced) MMT336 Stiffness Matrix (Influence functions)
 - (Reduced) LBT672 Stiffens Matrix (Influence functions)
 - Dust Grain in the LBT672 DM/RF Gap
 - Silvering Load on the LBT672 DM
 - Wind Load on the LBT672 DM

Past: The LBT Design ০০০ ০০	Transition: from LBT to Adaptive M2 0000 00	Present o●o	Future oo	Summary
Single-Physics				
	at a s			

Dynamic:

- MMT336 Adaptive Secondary Mirror eigenmodes/eigenvectors
- LBT672 Adaptive Secondary Mirror eigenmodes/eigenvectors
- Static
 - (Reduced) MMT336 Stiffness Matrix (Influence functions)
 - (Reduced) LBT672 Stiffens Matrix (Influence functions)
 - Dust Grain in the LBT672 DM/RF Gap
 - Silvering Load on the LBT672 DM
 - Wind Load on the LBT672 DM

Del Vecchio

National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Past: The LBT Design ooo oo	Transition: from LBT to Adaptive M2 0000 00	Present o●o	Future oo	Summary
Single-Physics				
Opto Maaba				

Dynamic:

- MMT336 Adaptive Secondary Mirror eigenmodes/eigenvectors
- LBT672 Adaptive Secondary Mirror eigenmodes/eigenvectors
- Static
 - (Reduced) MMT336 Stiffness Matrix (Influence functions)
 - (Reduced) LBT672 Stiffens Matrix (Influence functions)
 - Dust Grain in the LBT672 DM/RF Gap
 - Silvering Load on the LBT672 DM
 - Wind Load on the LBT672 DM

Past: The LBT Design ooo oo	Transition: from LBT to Adaptive M2	Present ○○●	Future oo	Summary
Single-Physics				

MMT336 and LBT672 Magnetic Circuit Design ... Good Agreement with previous Ansys Results.

 ELT/LIDAR Magnetic Circuit Design ... 2D Optimization has been Defined.

Del Vecchio

National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Past: The LBT Design ooo oo	Transition: from LBT to Adaptive M2 0000 00	Present ○○●	Future oo	Summary
Single-Physics				

MMT336 and LBT672 Magnetic Circuit Design ... Good Agreement with previous Ansys Results.

 ELT/LIDAR Magnetic Circuit Design ... 2D Optimization has been Defined.

Del Vecchio

National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Past: The LBT Design	Transition: from LBT to Adaptive M2	Present ○○●	Future oo	Summary
Single-Physics				

> MMT336 and LBT672 Magnetic Circuit Design ... Good Agreement with previous Ansys Results.

> ELT/LIDAR Magnetic Circuit Design ... 2D Optimization has been Defined.

Del Vecchio

National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Past: The LBT Design ooo oo	Transition: from LBT to Adaptive M2 0000 00	Present ○○●	Future oo	Summary
Single-Physics				

> MMT336 and LBT672 Magnetic Circuit Design ... Good Agreement with previous Ansys Results.

> ELT/LIDAR Magnetic Circuit Design ... 2D Optimization has been Defined.

Del Vecchio

National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Past: The LBT Design ooo oo	Transition: from LBT to Adaptive M2	Present 000	Future ●○	Summary
<i>Multi</i> -Physics				

Outline

Past: The LBT Design A "Non-Classic" Engineering: Design Criteria The Finite Element Method

2 Transition: from LBT to Adaptive M2
a From FEA to Multiphysics PDE's
b PDE Approach

3 Present

Single-Physics

Del Vecchio

National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Past: The LBT Design	Transition: from LBT to Adaptive M2	Present 000	Future ⊙●	Summary
Multi-Physics				

Coupled Analyses. Running two or more PDE's.

Structural Mechanics + Heat Transfer:

Giano (S. Gennari et al.)

Structural Mechanics + Navier-Stokes:

Floating ("Ball") Telescope (P. Salinari et al.)

Structural Mechanics + Electrostatics:

Gravitational Waves Experiment (R. Stanga et al.)
 LIDAR DM (F. Lisi)

Del Vecchio

National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Past: The LBT Design ooo oo	Transition: from LBT to Adaptive M2	Present 000	Future oo	Summary

Multiple coupled-field analyses can be run in the same process:

- 1. Thermal-induced + generic load deformations/stresses
- 2. Fluid-dynamics computations with deformable boundaries
- 3. Electromagnetic/Electrostatic computations with deformable domains
- FEA calculations can be embedded in the Matlab workspace:
 - 1. Pre- and Post-Processing of data is a component of the computational process
 - 2. Any user-defined functions can be internally implemented
 - 3. Do- and For- loops can be internally implemented

Past: The LBT Design ooo oo	Transition: from LBT to Adaptive M2	Present 000	Future oo	Summary

- Multiple coupled-field analyses can be run in the same process:
 - 1. Thermal-induced + generic load deformations/stresses
 - 2. Fluid-dynamics computations with deformable boundaries
 - 3. Electromagnetic/Electrostatic computations with deformable domains
- FEA calculations can be embedded in the Matlab workspace:
 - 1. Pre- and Post-Processing of data is a component of the computational process
 - 2. Any user-defined functions can be internally implemented
 - 3. Do- and For- loops can be internally implemented

Past: The LBT Design ooo oo	Transition: from LBT to Adaptive M2 0000 00	Present 000	Future oo	Summary

Multiple coupled-field analyses can be run in the same process:

- 1. Thermal-induced + generic load deformations/stresses
- 2. Fluid-dynamics computations with deformable boundaries
- 3. Electromagnetic/Electrostatic computations with deformable domains
- FEA calculations can be embedded in the Matlab workspace:
 - 1. Pre- and Post-Processing of data is a component of the computational process
 - 2. Any user-defined functions can be internally implemented
 - 3. Do- and For- loops can be internally implemented

Past: The LBT Design ooo oo	Transition: from LBT to Adaptive M2 0000 00	Present 000	Future oo	Summary

- Multiple coupled-field analyses can be run in the same process:
 - 1. Thermal-induced + generic load deformations/stresses
 - 2. Fluid-dynamics computations with deformable boundaries
 - 3. Electromagnetic/Electrostatic computations with deformable domains
- FEA calculations can be embedded in the Matlab workspace:
 - 1. Pre- and Post-Processing of data is a component of the computational process
 - 2. Any user-defined functions can be internally implemented
 - 3. Do- and For- loops can be internally implemented

Past: The LBT Design	Transition: from LBT to Adaptive M2 0000 00	Present 000	Future oo	Summary

- Multiple coupled-field analyses can be run in the same process:
 - 1. Thermal-induced + generic load deformations/stresses
 - 2. Fluid-dynamics computations with deformable boundaries
 - 3. Electromagnetic/Electrostatic computations with deformable domains
- FEA calculations can be embedded in the Matlab workspace:
 - 1. Pre- and Post-Processing of data is a component of the computational process
 - 2. Any user-defined functions can be internally implemented
 - 3. Do- and For- loops can be internally implemented

Past: The LBT Design	Transition: from LBT to Adaptive M2 0000 00	Present 000	Future oo	Summary

- Multiple coupled-field analyses can be run in the same process:
 - 1. Thermal-induced + generic load deformations/stresses
 - 2. Fluid-dynamics computations with deformable boundaries
 - 3. Electromagnetic/Electrostatic computations with deformable domains
- FEA calculations can be embedded in the Matlab workspace:
 - 1. Pre- and Post-Processing of data is a component of the computational process
 - 2. Any user-defined functions can be internally implemented
 - 3. Do- and For- loops can be internally implemented

Past: The LBT Design	Transition: from LBT to Adaptive M2 0000 00	Present 000	Future oo	Summary

- Multiple coupled-field analyses can be run in the same process:
 - 1. Thermal-induced + generic load deformations/stresses
 - 2. Fluid-dynamics computations with deformable boundaries
 - 3. Electromagnetic/Electrostatic computations with deformable domains
- FEA calculations can be embedded in the Matlab workspace:
 - 1. Pre- and Post-Processing of data is a component of the computational process
 - 2. Any user-defined functions can be internally implemented

3. Do- and For- loops can be internally implemented

Past: The LBT Design ooo oo	Transition: from LBT to Adaptive M2 ০০০০ ০০	Present 000	Future oo	Summary

- Multiple coupled-field analyses can be run in the same process:
 - 1. Thermal-induced + generic load deformations/stresses
 - 2. Fluid-dynamics computations with deformable boundaries
 - 3. Electromagnetic/Electrostatic computations with deformable domains
- FEA calculations can be embedded in the Matlab workspace:
 - 1. Pre- and Post-Processing of data is a component of the computational process
 - 2. Any user-defined functions can be internally implemented
 - 3. Do- and For- loops can be internally implemented

Past: The LBT Design	Transition: from LBT to Adaptive M2	Present	Future	Summary
000 00	0000 00			

Astroengineering is a Complex Interaction.

Del Vecchio

National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Past: The LBT D	lesign	Transition: from LBT to	o Adaptive M2	Present 000	Future oo	Summary
■ F V A T T iii ((Riccardi, A lecchio, C Andrighett The adapt Telescope n D. Bona eds), Adv Glasgow, T	A., Brusa, G., b., Salinari, P. ioni, M., Mille ive secondar : a progress .ccini Calia, E <i>vancements i</i> UK, pp. 1564	Xompero, M , Ranfagni, P. r, S. and Mar y mirrors for t report 3. L. Ellerbroe <i>n Adaptive Op</i> –1571, 2004.	., Zanotti, E ., Gallieni, I itegazza, P :he Large B k and R. R otics, Vol. 5)., Del D., Biasi, R Sinocular agazzoni 490, SPIE,	, - ,

Del Vecchio

National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy