

Simulations in Astroengineering: from FEA to Multiphysics PDE's

How Astronomers and Engineers interact

C. Del Vecchio¹

¹National Institute for Astrophysics Arcetri Astrophysical Observatory Florence Italy

AdOpt Informal Seminar, April 13 2007

Del Vecchio National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Outline

1 [Past: The LBT Design](#page-2-0)

- [A "Non-Classic" Engineering: Design Criteria](#page-2-0)
- [The Finite Element Method](#page-5-0)
- 2 [Transition: from LBT to Adaptive M2](#page-7-0)
	- [From FEA to Multiphysics PDE's](#page-8-0)
	- **PDE** Approach

3 [Present](#page-21-0)

■ *Single*[-Physics](#page-21-0)

4 [Future](#page-33-0)

■ *Multi*[-Physics](#page-33-0)

Del Vecchio National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Outline

1 [Past: The LBT Design](#page-2-0)

- [A "Non-Classic" Engineering: Design Criteria](#page-2-0)
- [The Finite Element Method](#page-5-0) **COL**
- **2** [Transition: from LBT to Adaptive M2](#page-7-0) [From FEA to Multiphysics PDE's](#page-8-0) **PDE** Approach

3 [Present](#page-21-0)

- *Single*[-Physics](#page-21-0)
- 4 [Future](#page-33-0)
	- *Multi*[-Physics](#page-33-0)

4 0 8 Del Vecchio National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

How the Specs are Fulfilled. The Translation of the Error Budget for the Structural Engineer.

- **As the most relevant disturbances are dynamic (wind and** drivers), the input parameter is the global stiffness.
- Such a stiffness is evaluated by the *locked rotor frequency* and the *free rotor frequency*, respectively.
- The *measure* of such a stiffness is set by the specifications at 8 Hz.
- If such a stiffness is reached, \dots
	- \blacksquare leave static response as a consequence;
	- \blacksquare let it work as the basis for the (high frequency, low amplitude) active optics, and, possibly, adaptive (very high frequency, very low amplitude) optics.

Discretization: from CAD to FEM.

Each Sub-Component must have a known elastic response.

Del Vecchio National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Outline

1 [Past: The LBT Design](#page-2-0)

A "Non-Classic" Engineering: Design Criteria ■ [The Finite Element Method](#page-5-0)

2 [Transition: from LBT to Adaptive M2](#page-7-0) [From FEA to Multiphysics PDE's](#page-8-0) [PDE Approach](#page-12-0) $\mathcal{L}_{\mathcal{A}}$

3 [Present](#page-21-0)

- *Single*[-Physics](#page-21-0)
- 4 [Future](#page-33-0)
	- *Multi*[-Physics](#page-33-0)

4 0 8 Del Vecchio National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Splitting a complex Structure in "Simple" Elements. Each Element is fully described. All Element Stiffness Sub-Matrices are Assembled.

Del Vecchio National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Adaptive Optics on board the Telescope. System Overview.

Del Vecchio National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Outline

[Past: The LBT Design](#page-2-0)

- [A "Non-Classic" Engineering: Design Criteria](#page-2-0) **[The Finite Element Method](#page-5-0)**
- 2 [Transition: from LBT to Adaptive M2](#page-7-0) [From FEA to Multiphysics PDE's](#page-8-0) **PDE** Approach

3 [Present](#page-21-0)

■ *Single*[-Physics](#page-21-0)

4 [Future](#page-33-0)

Multi[-Physics](#page-33-0)

4 D.K. Del Vecchio National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Theory Background. Strain-Displacement Relationship: the Tensor ϵ .

$$
\epsilon_{x} = \frac{\partial u}{\partial x}
$$
\n
$$
\epsilon_{y} = \frac{\partial v}{\partial y}
$$
\n
$$
\epsilon_{z} = \frac{\partial w}{\partial z}
$$
\n
$$
\epsilon_{xy} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)
$$
\n
$$
\epsilon_{yz} = \frac{1}{2} \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right)
$$
\n
$$
\epsilon_{xz} = \frac{1}{2} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right)
$$
\n
$$
\epsilon_{xz} = \frac{1}{2} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right)
$$

Del Vecchio National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Theory Background. Stress-Strain Relationship.

$$
\sigma = \begin{bmatrix}\n\sigma_x & \tau_{xy} & \tau_{xz} \\
\tau_{xy} & \sigma_y & \tau_{yz} \\
\tau_{xz} & \tau_{yz} & \sigma_z\n\end{bmatrix} \quad \sigma = D\epsilon
$$
\n
$$
D^{-1} = \frac{1}{E} \begin{bmatrix}\n1 & -\nu & -\nu & 0 & 0 & 0 \\
-\nu & 1 & -\nu & 0 & 0 & 0 \\
-\nu & -\nu & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 2(1+\nu) & 0 & 0 \\
0 & 0 & 0 & 0 & 2(1+\nu) & 0 \\
0 & 0 & 0 & 0 & 0 & 2(1+\nu)\n\end{bmatrix}
$$

D is the elasticity matrix, D^{-1} , the inverse of D, is the flexibility or compliance matrix. The above definition is for an isotropic material.

Del Vecchio National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

(□) () →

 Ω

Theory Background. Implementation.

The equilibrium equations expressed in the stresses for 3D are

$$
F_x = -\frac{\partial \sigma_x}{\partial x} - \frac{\partial \tau_{xy}}{\partial y} - \frac{\partial \tau_{xz}}{\partial z}
$$

\n
$$
F_y = -\frac{\partial \tau_{xy}}{\partial x} - \frac{\partial \sigma_y}{\partial y} - \frac{\partial \tau_{yz}}{\partial z} \quad \leadsto \quad -\vec{\nabla}\sigma = \vec{F} \quad (\vec{F} \text{ denotes the volume forces})
$$

\n
$$
F_z = -\frac{\partial \tau_{xz}}{\partial x} - \frac{\partial \tau_{yz}}{\partial y} - \frac{\partial \sigma_z}{\partial z}
$$

Substitution of the stress-strain relationship and the strain-displacement relationship into the static equilibrium equation produces Navier's equation of equilibrium expressed in the displacements. For static conditions, Navier's equation reads

$$
-\vec{\nabla}\cdot(\bm{c}\vec{\nabla}\vec{\bm{\mathit{u}}})=\vec{\bm{\mathit{F}}}
$$

Del Vecchio National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Outline

[Past: The LBT Design](#page-2-0)

- [A "Non-Classic" Engineering: Design Criteria](#page-2-0) **[The Finite Element Method](#page-5-0)**
- 2 [Transition: from LBT to Adaptive M2](#page-7-0) **Fig. 5 [From FEA to Multiphysics PDE's](#page-8-0) PDE** Approach

3 [Present](#page-21-0)

■ *Single*[-Physics](#page-21-0)

4 [Future](#page-33-0)

Multi[-Physics](#page-33-0)

4 0 8 Del Vecchio National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

HT, SM, EM, and NS PDE's are Built-in but ... The User

- "Classical" FE Elements/Nodes are Available but . . . Every
- \blacksquare "Classical" FE Methods are Available but \ldots Every Kind
- **T A Built-in Drawer Exists but . . . CAD Models are importable.**

> **HT, SM, EM, and NS PDE's are Built-in but ... The User** can Write his/her own Equations.

- \blacksquare "Classical" FE Elements/Nodes are Available but ... Ever
- \blacksquare "Classical" FE Methods are Available but \ldots Every Kind
- **A Built-in Drawer Exists but . . . CAD Model**

> **HT, SM, EM, and NS PDE's are Built-in but ... The User** can Write his/her own Equations.

■ "Classical" FE Elements/Nodes are Available but . . Every Model is Defined through Domains/Boundaries/Edges.

 \blacksquare "Classical" FE Methods are Available but \ldots Every Kind of

 \blacksquare A Built-in Drawer Exists but . . . CAD Models are importable.

Del Vecchio National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

- **HT, SM, EM, and NS PDE's are Built-in but ... The User** can Write his/her own Equations.
- "Classical" FE Elements/Nodes are Available but . . Every Model is Defined through Domains/Boundaries/Edges.
- \blacksquare "Classical" FE Methods are Available but \ldots Every Kind
- \blacksquare A Built-in Drawer Exists but . . . CAD Model

- **HT, SM, EM, and NS PDE's are Built-in but ... The User** can Write his/her own Equations.
- "Classical" FE Elements/Nodes are Available but . . Every Model is Defined through Domains/Boundaries/Edges.
- \blacksquare **"Classical" FE Methods are Available but ... Every Kind of**
- \blacksquare A Built-in Drawer Exists but . . . CAD Mo

- **HT, SM, EM, and NS PDE's are Built-in but ... The User** can Write his/her own Equations.
- "Classical" FE Elements/Nodes are Available but . . Every Model is Defined through Domains/Boundaries/Edges.
- "Classical" FE Methods are Available but . . Every Kind of Load/Restraint can be supplied.
- \blacksquare A Built-in Drawer Exists but . . . CAD Mo

- **HT, SM, EM, and NS PDE's are Built-in but ... The User** can Write his/her own Equations.
- "Classical" FE Elements/Nodes are Available but . . Every Model is Defined through Domains/Boundaries/Edges.
- "Classical" FE Methods are Available but . . Every Kind of Load/Restraint can be supplied.
- **A Built-in Drawer Exists but ... CAD Models are importable.**

- **HT, SM, EM, and NS PDE's are Built-in but ... The User** can Write his/her own Equations.
- "Classical" FE Elements/Nodes are Available but . . Every Model is Defined through Domains/Boundaries/Edges.
- "Classical" FE Methods are Available but . . Every Kind of Load/Restraint can be supplied.
- \blacksquare A Built-in Drawer Exists but . . CAD Models are importable.

Outline

[Past: The LBT Design](#page-2-0)

- [A "Non-Classic" Engineering: Design Criteria](#page-2-0) **[The Finite Element Method](#page-5-0)**
- **2** [Transition: from LBT to Adaptive M2](#page-7-0) [From FEA to Multiphysics PDE's](#page-8-0) [PDE Approach](#page-12-0) $\mathcal{L}_{\mathcal{A}}$

3 [Present](#page-21-0)

- *Single*[-Physics](#page-21-0)
-

4 [Future](#page-33-0) *Multi*[-Physics](#page-33-0)

4 0 8 Del Vecchio National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Dynamic:

MMT336 Adaptive Secondary Mirror eigenmodes/eigenvectors

LBT672 Adaptive Secondary Mirror eigenmodes/eigenvectors

■ Static

-
-
-

K ロ ▶ K 御 ▶ K 唐 ▶ K

Dynamic:

- **MMT336 Adaptive Secondary Mirror** eigenmodes/eigenvectors
- **LBT672 Adaptive Secondary Mirror** eigenmodes/eigenvectors

■ Static

- (Reduced) MMT336 Stiffness Matrix (Influence functions) **E.** (Reduced) LBT672 Stiffens Matrix (Influence functions)
- **Dust Grain in the LBT672 DM/RF Gap**
- **Silvering Load on the LBT672 DM**
- **Wind Load on the LBT672 DM**

Dynamic:

- **MMT336 Adaptive Secondary Mirror** eigenmodes/eigenvectors
- **LBT672 Adaptive Secondary Mirror** eigenmodes/eigenvectors
- Static
	- (Reduced) MMT336 Stiffness Matrix (Influence functions)
	- (Reduced) LBT672 Stiffens Matrix (Influence functions)
	- **Dust Grain in the LBT672 DM/RF Gap**
	- **Silvering Load on the LBT672 DM**
	- **Wind Load on the LBT672 DM**

Dynamic:

- **MMT336 Adaptive Secondary Mirror** eigenmodes/eigenvectors
- **LBT672 Adaptive Secondary Mirror** eigenmodes/eigenvectors
- Static
	- (Reduced) MMT336 Stiffness Matrix (Influence functions)
	- (Reduced) LBT672 Stiffens Matrix (Influence functions)
	- **Dust Grain in the LBT672 DM/RF Gap**
	- **Silvering Load on the LBT672 DM**
	- **Wind Load on the LBT672 DM**

Dynamic:

- **MMT336 Adaptive Secondary Mirror** eigenmodes/eigenvectors
- **LBT672 Adaptive Secondary Mirror** eigenmodes/eigenvectors
- Static
	- (Reduced) MMT336 Stiffness Matrix (Influence functions)
	- (Reduced) LBT672 Stiffens Matrix (Influence functions)
	- Dust Grain in the LBT672 DM/RF Gap

Silvering Load on the LBT672 DM

Wind Load on the LBT672 DM

Dynamic:

- **MMT336 Adaptive Secondary Mirror** eigenmodes/eigenvectors
- **LBT672 Adaptive Secondary Mirror** eigenmodes/eigenvectors
- Static
	- (Reduced) MMT336 Stiffness Matrix (Influence functions)
	- (Reduced) LBT672 Stiffens Matrix (Influence functions)
	- Dust Grain in the LBT672 DM/RF Gap
	- Silvering Load on the LBT672 DM
	- Wind Load on the LBT672 DM

Dynamic:

- **MMT336 Adaptive Secondary Mirror** eigenmodes/eigenvectors
- **LBT672 Adaptive Secondary Mirror** eigenmodes/eigenvectors
- Static
	- (Reduced) MMT336 Stiffness Matrix (Influence functions)
	- (Reduced) LBT672 Stiffens Matrix (Influence functions)
	- Dust Grain in the LBT672 DM/RF Gap
	- Silvering Load on the LBT672 DM
	- Wind Load on the LBT672 DM

MMT336 and LBT672 Magnetic Circuit Design ... Good Agreement with previous Ansys Results.

ELT/LIDAR Magnetic Circuit Design ... 2D Optimization

Del Vecchio National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

■ MMT336 and LBT672 Magnetic Circuit Design . . Good Agreement with previous Ansys Results.

ELT/LIDAR Magnetic Circuit Design ... 2D Optimization

Del Vecchio National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

■ MMT336 and LBT672 Magnetic Circuit Design . . Good Agreement with previous Ansys Results.

ELT/LIDAR Magnetic Circuit Design ...2D Optimization

Del Vecchio National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

- MMT336 and LBT672 Magnetic Circuit Design . . . Good Agreement with previous Ansys Results.
- **ELT/LIDAR Magnetic Circuit Design ... 2D Optimization** has been Defined.

Del Vecchio National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Outline

[Past: The LBT Design](#page-2-0)

- [A "Non-Classic" Engineering: Design Criteria](#page-2-0)
- **[The Finite Element Method](#page-5-0)**
- **2** [Transition: from LBT to Adaptive M2](#page-7-0) [From FEA to Multiphysics PDE's](#page-8-0) **PDE** Approach

3 [Present](#page-21-0)

Single[-Physics](#page-21-0)

4 [Future](#page-33-0) ■ *Multi*[-Physics](#page-33-0)

4 0 8 Del Vecchio National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Coupled Analyses. Running two or more PDE's.

Structural Mechanics + Heat Transfer:

Giano (S. Gennari et al.)

■ Structural Mechanics + Navier-Stokes:

Floating ("Ball") Telescope (P. Salinari et al.)

■ Structural Mechanics + Electrostatics:

Gravitational Waves Experiment (R. Stanga et al.) LIDAR DM (F. Lisi)

Del Vecchio National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Multiple coupled-field analyses can be run in the same process:

- 1. Thermal-induced + generic load deformations/stresses
- 2. Fluid-dynamics computations with deformable boundaries
- 3. Electromagnetic/Electrostatic computations with deformable domains
- \blacksquare FEA calculations can be embedded in the Matlab
	- 1. Pre- and Post-Processing of data is a component of the computational process
	- 2. Any user-defined functions can be internally implemented
	- 3. Do- and For- loops can be interna[lly](#page-34-0) i[m](#page-43-0)[p](#page-34-0)[le](#page-35-0)m[e](#page-34-0)[n](#page-35-0)[te](#page-44-0)[d](#page-34-0)

- **Multiple coupled-field analyses can be run in the same** process:
	- \blacksquare 1. Thermal-induced + generic load deformations/stresses
	- 2. Fluid-dynamics computations with deformable boundaries
	- 3. Electromagnetic/Electrostatic computations with deformable domains
- \blacksquare FEA calculations can be embedded in the Matlab
	- 1. Pre- and Post-Processing of data is a component of the computational process
	- 2. Any user-defined functions can be internally implemented
	- 3. Do- and For- loops can be interna[lly](#page-35-0) i[m](#page-43-0)[p](#page-34-0)[le](#page-35-0)m[e](#page-34-0)[n](#page-35-0)[te](#page-44-0)[d](#page-34-0)

- **Multiple coupled-field analyses can be run in the same** process:
	- \blacksquare 1. Thermal-induced + generic load deformations/stresses
	- 2. Fluid-dynamics computations with deformable boundaries
	- 3. Electromagnetic/Electrostatic computations with deformable domains
- \blacksquare FEA calculations can be embedded in the Matlab
	- 1. Pre- and Post-Processing of data is a component of the computational process
	- 2. Any user-defined functions can be internally implemented
	- 3. Do- and For- loops can be interna[lly](#page-36-0) i[m](#page-43-0)[p](#page-34-0)[le](#page-35-0)m[e](#page-34-0)[n](#page-35-0)[te](#page-44-0)[d](#page-34-0)

- **Multiple coupled-field analyses can be run in the same** process:
	- \blacksquare 1. Thermal-induced + generic load deformations/stresses
	- 2. Fluid-dynamics computations with deformable boundaries
	- 3. Electromagnetic/Electrostatic computations with deformable domains
- \blacksquare FEA calculations can be embedded in the Matlab
	- 1. Pre- and Post-Processing of data is a component of the computational process
	- 2. Any user-defined functions can be internally implemented
	- 3. Do- and For- loops can be interna[lly](#page-37-0) i[m](#page-43-0)[p](#page-34-0)[le](#page-35-0)m[e](#page-34-0)[n](#page-35-0)[te](#page-44-0)[d](#page-34-0)

- **Multiple coupled-field analyses can be run in the same** process:
	- \blacksquare 1. Thermal-induced + generic load deformations/stresses
	- 2. Fluid-dynamics computations with deformable boundaries
	- 3. Electromagnetic/Electrostatic computations with deformable domains
- \blacksquare FEA calculations can be embedded in the Matlab workspace:
	- 1. Pre- and Post-Processing of data is a component of the computational process
	- 2. Any user-defined functions can be internally implemented
	- 3. Do- and For- loops can be interna[lly](#page-38-0) i[m](#page-43-0)[p](#page-34-0)[le](#page-35-0)m[e](#page-34-0)[n](#page-35-0)[te](#page-44-0)[d](#page-34-0)

- **Multiple coupled-field analyses can be run in the same** process:
	- \blacksquare 1. Thermal-induced + generic load deformations/stresses
	- 2. Fluid-dynamics computations with deformable boundaries
	- 3. Electromagnetic/Electrostatic computations with deformable domains
- \blacksquare FEA calculations can be embedded in the Matlab workspace:
	- 1. Pre- and Post-Processing of data is a component of the computational process
	- 2. Any user-defined functions can be internally implemented
	- 3. Do- and For- loops can be interna[lly](#page-39-0) i[m](#page-43-0)[p](#page-34-0)[le](#page-35-0)m[e](#page-34-0)[n](#page-35-0)[te](#page-44-0)[d](#page-34-0)

- **Multiple coupled-field analyses can be run in the same** process:
	- \blacksquare 1. Thermal-induced + generic load deformations/stresses
	- 2. Fluid-dynamics computations with deformable boundaries
	- 3. Electromagnetic/Electrostatic computations with deformable domains
- \blacksquare FEA calculations can be embedded in the Matlab workspace:
	- 1. Pre- and Post-Processing of data is a component of the computational process
	- 2. Any user-defined functions can be internally implemented

■ 3. Do- and For- loops can be interna[lly](#page-40-0) i[m](#page-43-0)[p](#page-34-0)[le](#page-35-0)m[e](#page-34-0)[n](#page-35-0)[te](#page-44-0)[d](#page-34-0)

- **Multiple coupled-field analyses can be run in the same** process:
	- \blacksquare 1. Thermal-induced + generic load deformations/stresses
	- 2. Fluid-dynamics computations with deformable boundaries
	- 3. Electromagnetic/Electrostatic computations with deformable domains
- \blacksquare FEA calculations can be embedded in the Matlab workspace:
	- 1. Pre- and Post-Processing of data is a component of the computational process
	- 2. Any user-defined functions can be internally implemented
	- 3. Do- and For- loops can be interna[lly](#page-41-0) i[m](#page-43-0)[p](#page-34-0)[le](#page-35-0)[m](#page-43-0)[e](#page-34-0)[n](#page-35-0)[te](#page-44-0)[d](#page-34-0)

Astroengineering is a Complex Interaction.

Del Vecchio National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

Del Vecchio National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy