The next generation of Wide Field Adaptive Optics

or: How I Learned to Stop Worrying and Love Anisoplanatism

Jeff Stoesz HIA/UVic

National Research Council Canada

Conseil national de recherches Canada

Jean-Pierre Véran, David Andersen, Tim Davidge, Jennifer Dunn, Danielle Frenette, Glen Herriot, Laurent Jolissaint, Francois Rigaut, Scott Roberts, Malcolm Smith

Outline

- Altair: the first Wide Field Adaptive Optics instrument
- Ground Layer Adaptive Optics
 - Modeling goals
 - I. <u>Routinely model performance</u>
 - 2. <u>Constrain the basic design parameters</u>
 - 3. Identify and address design issues
 - Gemini GLAO
 - TMT GLAO for the Wide Field Optical Spectrograph

Altair: altitude conjugated WFAO

- Facility AO system for Gemini North, integrated in to the observatory system and not the science instrument.
- Altair can be activated by the flip of a mirror, to feed NIRI or NIFS.

3

Anisoplanatism

Anisoplanatism

Altair Anisoplanatism

Sparse Fields

Sparse Fields

Stoesz, Arcetri

20/11/2006

Focal plane and Pupil plane data

Altair measures seeing, and outer scale!!

Modeling Altair image quality

- Modeled $SR(r_{o})$ with the Maréchal approximation. Important to planning observations with Altair.
- Quantified wavefront error from vibration and M2 print through.

20/11/2006

Outline

- Altair: the first Wide Field Adaptive Optics instrument
- Ground Layer Adaptive Optics: The next generation
 - Modeling goals
 - I. <u>Routinely model performance</u>
 - 2. <u>Constrain the basic design parameters</u>
 - 3. Identify and address design issues
 - Gemini GLAO
 - TMT GLAO for the Wide Field Optical Spectrograph

Anisoplanatism in GLAO

GLAO Modeling Goals

- I. <u>Routinely model performance</u> over the relevant parameter space with suitable optical turbulence profile statistics.
- 2. <u>Constrain the basic design parameters</u> such as guide star asterism, actuator density, and most importantly requirements on frame rate.
- 3. <u>Identify and address design issues</u> such as wavefront sensing with LGS, optimal and practical conjugation, PSF morphology and stability, operational concept...

I. Routinely model performance

- Point Spread Function (PSF) from analytic Power Spectral Density (PSD) of the AO corrected phase.
 - Pioneering work: Rigaut et al. (1998), Tokovinin et al. (2000), and rigorous development by Jolissaint et al. (2006), Van Dam (2006)
 - Development of anisoplanatism for GLAO: Jolissaint et al. (2004), Stoesz et al. (2004), Tokovinin (2004)
 - GLiFFT: accurately solves GLAO figure(s) of merit for the fundamental parameters, especially in the Very Wide GLAO regime.

4.3

3.2

2.1

1.0

-0.1

-1.2

-2.3

Log₁₀(rad² m²)

0.03

0.03

0.02

0.02

0.01

0.01

0,00

Strehl

10

0

-10

10

5

0

-5

-10

10

5

0

-5

-10

10

5

0

-5

-10

-10

GLAO figure of merit

 For evaluating feasibility and the significance of various trade studies.

Springel & Hernquist

Stoesz, Arcetri

20/11/2006

GLAO figure of merit

- Reduced the PSF to the optimal background-noise-limited aperture and its fraction of encircled energy.
- Take the ratio with respect to seeing, which is important to gauge the significance of each trade study.

$$\Gamma'/\Gamma$$
= Integration Time Ratio = $\left(\frac{\bar{\omega}'}{\bar{\omega}}\right)^2 \left(\frac{EE_{circ}(\bar{\omega})}{EE'_{circ}(\bar{\omega}')}\right)^2$

"ITR"

Outline

- Altair: the first Wide Field Adaptive Optics instrument
- Ground Layer Adaptive Optics: The next generation
 - Modeling goals
 - I. <u>Routinely model performance</u>
 - 2. <u>Constrain the basic design parameters</u>
 - 3. Identify and address design issues
 - Gemini GLAO
 - TMT GLAO for the Wide Field Optical Spectrograph

Realistic turbulence distributions

The gray zone and the Very Wide Field

The basic parameters: $\Delta, \theta, \Delta t$

- Solve for optimal Δ .
- The θ of the VWGLAO regime: useful gains demand the full seeing limited field of view.

Δt : GLAO does not make new demands on WFS

- The VWGLAO regime:
 - The shortest upper bound on Δt demanded to eliminate lag still provides enough WFS flux => noise and lag for these cases is negligible. => no new demands on WFS

Outline

- Altair: the first Wide Field Adaptive Optics instrument
- Ground Layer Adaptive Optics: The next generation
 - Modeling goals
 - I. <u>Routinely model performance</u>
 - 2. <u>Constrain the basic design parameters</u>
 - 3. Identify and address design issues
 - Gemini GLAO
 - TMT GLAO for the Wide Field Optical Spectrograph

3. Identify and address design issues

- Gemini GLAO feasibility study:
 - θ set to the maximum for the telescope (10').
 - 4 laser guide stars (plus 3 tip-tilt NGS) is better than numerous natural guide stars.
 - GLAO considered a motivator for an Adaptive Secondary (AM2).

CURA

an Universities for Research in Ast

- TMT Wide Field Optical Spectrograph GLAO feasibility study:
 - AM2 is motivated by other AO instruments GLAO for WFOS co-opts.
 - AM2 pitch and bandwidth requirements.
 - θ set to enclose required 81 square arcminute WFOS FoV (17).
 - 4 laser guide star wavefront sensors have special design issues.
 - LGS WFS NCPA correction: by electronics and optics.
 - LGS WFS and NGS WFS requirements.
 - LGS requirements.
 - WFOS-GLAO operational concept.
 - Global efficiency predictions.

Global Efficiency Predictions

- $\theta = 6.38$ ' Arm-GLAO (>\$12.6M, potential 27% time savings)
- $\theta = 17'$ AM2-GLAO (\$2.2M, potential 17% time savings)

Global Efficiency Predictions

- Accounting for LGS downtime.
- Zenith angle effects are subtle for $\zeta < 45$ degrees.

Stoesz, Arcetri

Adaptive Secondary (AM2)

Stoesz, Arcetri

20/11/2006

Guide Star facilities

 + Sodium LGS facilities maturing and can provide over 4x10⁶ photons/m²/s/beacon

Stoesz, Arcetri

Future GLAO Modeling Development

- Use atmospheric models as input to the PSD: outer scale and other non-Kolmogorov effects, Cn2 profile statistics near the ground (SODAR, G-SCIDAR, SHABAR).
- Enhance the semi-analytic PSF models to account for: aberrations affecting blue and UV performance, real actuator geometries, lag optimization, large telescope wind shake, etc..
- Not only for feasibility and trade studies. Eventually....

GLAO PSF morphology

Future GLAO PSF Modeling

- Large adaptive telescopes will have a GLAO mode rather than the seeinglimited mode as we know it now.
- Data from adaptive telescopes of the future will include measurement of atmospheric parameters.
- GLAO PSF models will be used in data reduction from the next generation of Wide Field instruments.

